AFIT/GEO/ENG/92D-07

AD-A259 448
- {WRERETREM

DTIC

ELECTE
JANZ 7 1993D

OBJECT TRACKING THROUGH ADAPTIVE CORRELATION

THESIS

Dennis Anthony Montera
Captain, USAF

AFIT/GEO/ENG/92D-07

Approved for public release; distribution unlimited

" 93-01392
\lIIhIIIlII\\l\lll\I\llIIIu\\\lllhll‘l\‘ll‘ A 92 - -~ -

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

AFIT/GEO/ENG/92D-07

OBJECT TRACKING THROUGH ADAPTIVE CORRELATION

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

e
DL;C R

Dennis Anthony Montera, B.S.E.E.

Captain, USAF NTIS GRS
U prio 248
HRVIVTIRBRUT Y |

Aocc.sionIfB;.

ST

- et

V Jusntitieutien

a
O

By

1
|
17 December, 1992 “

e =+ -

Approved for public release: distribution unlimited ,P_\ l l
!

Distr!b‘tim/ o
Avalladbility Code§
‘Avail and/or
‘p1st | Speclal

e

N

Acknowledgments

I would like to thank my advisor, Maj. Steven K. Rogers, along with the rest
of my thesis committee, Capt. Dennis W. Ruck and Dr. Mark Oxley, for giving me
the opportunity to tackle this problem. I would especially like to thank Maj. Rogers
for his guidance, insight, and encouragement which allowed me to succeed while also

allowing me to find my own path.

I also want to thank the people at the Model Based Vision Laboratory for the
assistance they gave me. I would especially like to thank Mr. Jim Leonard, who
took the time to listen to my ideas, offered suggestions, and gave me insights into

other projects being worked in this area.

Most importantly, I would like to thank my wife, llona, for bearing with me
when times were tough, and enjoying life with me when we had a little iree time. Her
patience and understanding with the hours I spent working on this research helped

more to make it possible than she will ever know.

Dennis Anthony Montera

Table of Contents

Page

Acknowledgments e il
Tableof Contents i i v ittt e et e e e e e e e e iii
Listof Figures i ittt ettt v
Listof Tables v i it e e e e e e e e e vii
Abstract e e e e e e e e viii
1. Imtroduction e e e e e e 1
11 Background 1

1.2 Problem Definition 2

1.3 Scope and Limitations 3

14 Methodology 4

15 Overviewof Thesis 5

IL. BasicConcepts it 6
2.1 Correlation i e e e e e e e 6

2.2 Adaptive Correlation 7

23 Summary e e e e e e 7

III. Methodology00, 9
3.1 Hardwareand Software 9

32 FLIRImages 9

3.3 CorrelationProcess, 13

| 3.4 Walk-off and Error Reduction 16

il

Iv.

V.

3.5 Adaptive Template
3.6 Distinguishing Between Multiple Targets
3.6.1 Template Autocorrelation
3.6.2 Correlation Peak Identification.
3.7 TrackingOther Targets.
3.8 Correlation Information

39 Summary e e e e

Resultsand Analysis

4.1 Comparison Criteria
4.2 Thresholding Technique Comparison
4.3 Tracking in the Presence of Multiple Targets
4.4 Error Reduction and Walk-off
4.5 Locating Other Targets
46 Summary e e e e e e e e e e

Conclusions .+ . . . v v e

5.1 Research Summary
52 ResearchConclusionsc....

Appendix A. Adaptive Tracker Program Execution.

Appendix B. C Language Computer Programs

Bl TRACMENUC0
B.2 TRACPRGM.C e e
B3 CORC. il

..

iv

33
33
34

47
58
60

61
61
62

Figure

© o N ook LN

[I R L T T T T B
© ©W ® N O O ke WD = O

21.
22.

List of Figures

Page
Example Correlation 8
Sample frames from Sequence 1 11
Sample frames from Sequence 2 oL L. 12
Example Image Before and After Edge Extraction 14
Program Flow Diagram 15
Adaptive Template Windowing Process 19
Sample Templates 20
Correlation Peak Matching 24
Correlation Offset Versus Pixel Location 25
Pixel Weight Factors, Set 1 26
Pixels Weight Factors, Set 2. 26
Airplane Images Used to Validate Postprocessing Algorithm 28
Truck Images Used to Validate Postprocessing Algorithm 28
Tank Images Used to Validate Postprocessing Algorithm 29
Lost Target Track 35
Good Target Track 36
Effects of Initial Error Bias 37
Comparison of Thresholding Techniques 38
Effectsof Erroron Tracking 39
Tracking Without Correlation Postprocessing when Multiple Targets
arePresent e e e 41
Correlation Drift to Highest Energy Target 42
Range versus Error Tracking Based on Correlation Postprocessing, Scene
Average w/grey-scalerestored 44

v

-

Figure
23.

24.

25.
26.
27.
28.
29.
30.
31.
32.

Range versus Error Tracking Based on Correlation Postprocessing, Edge
Extraction¢¢cii ..

Range versus Error Tracking Based on Correlation Postprocessing, No
Preprocessing e

Comparison of Research Results
Sequence 1, Target 3 Final Frames
Snapshots of Tracking Sequence 1, Target 1
Snapshots of Tracking Sequence 1, Target 2

-Snapshots of Tracking Sequence 1, Target 3

Snapshots of Tracking Sequence 2, Target 1
Snapshots of Tracking Sequence 2, Target 2
Snapshots of Tracking Sequence 2, Target 3

vi

Page

46
49
51
52
53
54
55
56
57

List of Tables

Table Page
1. Average Tracking Error versus Thresholding Technique. 40
2. Comparison of Fallback Measures Utilized.. 47
3. Average Tracking Error Comparison. 48
4. FinalErrorComparison.., 48
5. Other Target Locatingfor Option 1. 58
6. Other Target Locating for Option 2. 59
7. Other Target Locating for Option 3. 59

AFIT/GEO/ENG/92D-07

Abstract

This paper discusses the use of a correlation based system to track an object
through a series of images based on templates derived from previous image frames.
The ability to track is extended to sequences which include multiple objects of in-
terest within the field of view of the correlator system. This is accomplished by
comparing the height and shape of the correlation of the template correlated with
itself to the height and shape of all peaks in the correlation of the template with the
next scene. The result is to identify the region in the next scene which best matches
the shape and intensity of the designated target. The use of correlation plane in-
formation for the designation of other objects of interest within the field of view
will also be demonstrated. This process compares only the shape of the template
correlated with itself to the shape of all peaks in the correlation of the template with
the next scene. The result of this process-is to identify all regions in the next scene
which closely resemble the shape of designated target. In addition to correlation
plane postprocessing, an adaptive window is used to determine the template size in
ordgr to reduce the effects of correlator walk-off. Two image sequences were utilized
in the conduct of this research. These sequences, taken from a Forward Looking
Infrared (FLIR) sensor mounted onboard a DC-3 aircraft, contain a T-55 tank and
both an M-113 and a TAB-71 armored personnel carrier moving in a columnized
formation along a dirt road. Results indicated that postprocessing of correlation
plane information could discriminate between multiple targets in the sensors field
of ‘viewi (F_‘OV), and maintain a track on the designated target. Postprocessing of
correlation plahe infbrmatidn also indicated that other targets within the FOV could
be located.

viii

OBJECT TRACKING THROUGH ADAPTIVE CORRELATION

1. Introduction

The ability to track an object autonomously in a cluttered environment with
several objects within a sensor’s field-of-view (FOV), has been a goal of both the
military and industry for some time. While the potential applications of such a
system are unlimited in industry, the military is investigating a capability which
would allow a wafhead to track a target with minimum human interaction. For the
purpose of this research, the ability to track a target is achieved when an electro-
optic sensor system is able to correctly determine the location of a target within its
FOV through time as both the sensor and the target are moving. In order for such a
system to be effective, the tracker must be able to maintain lock on a target despite
clutter, a changing target signature, multiple targets within the FOV, and partial
obscurations. The ability to ultimately identify the target, and possibly change lock
to another, higher value target within the FOV is also desired. Finally, the system
must be capable of operating in real-time to be of any military use. Although
many tracking systems have been developed to date, none meet all of these strict

requirements at all times.
1.1 Background

The battleground of the future continues to become more a.nd more complex,
gfeatly increasing in complexity the demands placed on the pilots of high perfor-
mance aifcra.ff and helicopters. One means of reducing tasks placed on these pilots
is to develop a real-time, autonomous tracking system, capable of locking onto tar-
gets in a cluttered, highly dynamic battlefield. Any such tracking system must be

capable of handling a large set of potential targets; targets which may vary in size,

f—

L/

shape, and intensity. To maintain low cost. the tracking system must be compatible

with current airborne sensor systems such as the Forward-Looking Infrared (FLIR)
sensor. Finally, the system must attain track quickly in order to ensure timely de-

livery of onboard weapon systems.

The areas of autonomous image tracking and identification have been investi-
gated rigorously by studeats at the Air Force Institute of Technology (AFIT) under
the direction of Dr. Steven Rogers. These studies have examined many potential

methods and algorithms for achieving autonomous image tracking (10) (14).

One potential system researched was the correlation based tracker, investigated
by Capt. Paul~Law, GE 91-D, in his thesis titled “Correlation Based Distortion
Invariant Infrared Tracking” (10). Correlation algorithms measure the similarity
between a target template and the actual scene. To avoid the need to store large
numbers of templates representing all possible orientations of all possible targets,
Capt. Law implemented an adaptive correlator which generated its template from
the last frame of the actual scene. With the adaptive correlation algorithm, Capt.
Law was able to maintain track of . designated target using real FLIR imagery
which contained multiple possible targets and large amounts of background clutter.
Because correlations can be computed optically through Fourier Optics techniques at
nearly the speed of light, a real-time autonomous tracker based on optical, adaptive

correlations was projected as an achievable system.

1.2 Problem Definition

An autonomous, real-time image tracking system which can identify targets
and choose highest value targets among multiple targets in its FOV does not cur-
rently exist. Any such system must be capable of correctly tracking the position of a
designated target despite such problems as a cluttered FOV, multiple targets within

its FOV, and changes in the position and orientation of both target and tracker.

-

Furthermore, it must be capable of identifying targets ard choosing those with the
highest priority or target value.

1.3 Scope and Limitations

Much of the recent work in tracking has concentrated on developing algorithms
which predict the possible locations of a target, then choose the the target out of all
detected objects which best matches the projected location (1) (2) (3) (7) (11) (16)
(18). These research efforts concentrated on determining which detected objects
were the targets being tracked, and not on how to find potential targets. One
potential method of finding and tracking targets at the same time is through a
correlation based tracker. Southern Research Technologies, Inc. has developed a
real time correlation based system which tracks a designated target in a cluttered
environment (17). However, this system searches only a small area of the entire

scene, and multiple targets of similar shape and size are not present in the FOV..

This research was a continuation of that conducted by Capt. Paul Law and
was intended to improve upon the methods he developed while introducing some
new capabilities. Capt. Paul Law demonstrated in his thesis work that a correlation
based system was capable of tracking a designated target in a cluttered, multi-target
environment while both the target and the tracker were moving (10). The main goals
of this research were to: 1) reduce the tracking error encountered by Capt. Law in
his research (10), 2) expand the portion of scene used to determine if other possible
targets are present, 3) to track multiple targets if present, and 4) to address the issue
of correlator “walk-off” and identify solutions to reduce this effect. The ability to
identify all potential targets being tracked, and to choose the highest value target
present and change lock to that target were left open for future research. To reduce
the amount of effort necessary to achieve these objectives, the following limitations

were imposed.

o The task of target acquisition (initially detecting and designating the target)
was not addressed. It was assumed that initial target designation was achieved
manually by an operator, and that the system need only maintain track of the

target once this was accomplished.

¢ Computer simulations using real FLIR images were conducted only, and thus
the system did not operate in real-time. However, it was felt that an optical
implementation of the system modeled would be capable of functioning in real-

time.

1.4 Methodology

Along with improving the performance achieved by Capt. Law (10), this effort
focused on addressing the issue of correlator walk-off, using the information in the
template auto-correlation peak, and the capability to track multiple targets within

the tracker’s FOV.

In research conducted by Tam (13), an accumulated tracking error was encoun-

tered. While the optical correlator used in his research may have introduced tracking

nonlinearities (6) and random noise (4) errors, this thesis investigated “walk-off” er-
ror inherent in an adaptive correlation based tracker, identified its sources, and tested

solutions for reducing its effects.

In a scene with multiple targets present, it is possible that each target will yield
a peak through the correlation process. Each of these peaks will vary in amplitude,
and some may be larger than the peak corresponding to the target being tracked.
Therefore, a method of using the information contained in the shape of the correlation
peak (14) was introduced. In this method, the shape of the correlation peak of the
template correlated with itself was used to identify the template-scene correlation
peak which most closely resembled it. This peak was then determined to be that

which corresponds to the target being tracked.

Since Capt. Law had no means of distinguishing the correlation peak of the
target being tracked from the peaks corresponding to other objects in the FOV,
he reduced the area of the scene frame searched to exclude other possible targets
(10). However, since the method of using correlation peak shape made it possible to
identify one target from all others within the FOV, it was now possible to open the
scene searched to include the entire frame. This allowed for the tracking of all other
secondary targets within the tracker's FOV.

Computer simulations for this research were conducted on the SUN Sparc 2
workstations using the KHOROS image and signal processing software developed
by the faculty and students at the University of New Mexico (9). The FLIR images
used were those utilized by Capt. Law (10) which were provided by the Model-Based
Vision Laboratory, WL/AARA, Wright-Patterson AFB, Ohio. These images were
499x320 pixels in size with 256 possible grey scale values per pixel. The tracking
algorithms used were modifications of the programs written by Capt. Law in the C

programming language.

1.5 Qverview of Thesis

- This thesis is organized into five chapters and an appendix. The order of
chapters represents the chronological evolution of this research effort from an idea
to theory, implementation to results, and conclusions. The appendix contains copies

of the C language programs used to conduct the adaptive correlation process.

This chapter introduces the thesis topic, while also presenting the scope and
methodology implemented in this research. Chapter II discusses the basic concepts of
correlation and adaptive correlation as they relate to this effort. Chapter III describes
the evolution of and procedures used to conduct the computer simulations of adaptive
correlation tracking. Chapter IV discusses and analyzes the results obtained during
this research. Chapter V presents the research conclusions and discusses potential

research areas for future efforts.

II. Basic Concepts

In his thesis (10), Capt. Paul Law provided a detailed review of the concept of
correlation, adaptive correlations, their uses, and possible optical implementations
of a correlator system. Also, Kumar (8) provides an overview of various optical
correlator designs, including both strengths and weaknesses of each. This chapter
briefly discusses the fundamentals of correlation and describes what is meant by

adaptive correlations.

2.1 Correlation

Correlation is a mathematical process which measures the similarity between

two objects. The correlation of s(x,y) and t(x,y) when both are real is
sty & [T [T septa-2zp-ydads (1)
or
s(z,y)xt(z,y) = F [S(&n) - T(€n)] (2)

the template is positioned at every possible location in the field of the search scene.
For each possible location, the two images are multiplied, and the value obtained
represents the similarity, or correlation, of the two images at those locations. The
correlation should be large when the two objects overlap, and small or zero when
no overlap occurs. When the two objects are at the location where the best match

between the two occurs, a peak in the correlation plane is expected.

There are, however, some factors which affect the results of a correlation. First,
if the object in the search scene varies greatly in size, shape, or orientation from the

template, no true correlation peak may occur and the object in the search scene may

fade into the background noise. Also, areas in the search scene which have larger or
brighter values than those of the object to be located, may produce larger correlation
peaks than those created by the true object of interest. These are factors which must

be accounted for in any correlation based tracker.

2.2 Adaptive Correlation

Adaptive correlation applies to the desire to track an object while the scene
and object being tracked are changing with time. Since the object’s size, shape, and
orientation may be changing, the template being used must adapt for a correlator to
maintain a good track. This is accomplished by continually updating the template
used in the correlation process. Each time the target is identified in the search scene,
the object is extracted from that scene to be used as the template for the next frame
of the sequence. Although little research has been reported in the area of correlation
post processing (8), analysis of the correlation plane information with and without
energy normalization proved itself to be very valuable in distinguishing between
multiple targets within the sensors FOV. As long as the time between frames is not
large enough to allow extreme changes in size, shape, or orientation of the object
being tracked, this method of adapting the template to the current scene should
be sufficient to allow correlation based tracking. An example scene, template, and

correlation plane are shown in Figure 1.

2.3 Summary

This chapter briefly reviewed the basic concepts necessary for the conduct of
this thesis. An overview of correlations and the concept of adaptive correlations were
presented, and the reader is referred to the thesis of Capt. Law (10) for a more in

depth discussion of these topics.

Chapters III and IV describe the methodology used and results obtained using

an adaptive correlation based system to track real targets in FLIR generated imagery.

-1

: i:ﬁﬂz‘é}».i:'f v

(a)

Figure 1.

Example correlation shown in negative. (a) scene, (b) template, and (c)

correlation plane

1

e

III. Methodology

This chapter discusses the methodology and approach taken for this experiment
in adaptive correlation based tracking. In his thesis (10), Capt. Law provided a
very detailed discussion of the hardware, software, images, and correlation method
used during his research. A brief review of this information is given, followed by a
detailed presentation of the changes made to expand and improve the performance

of the correlation based tracking system.

3.1 Hardware and Software

All programming and simulations for this research were conducted on Sun
Sparc 2 workstations. Each workstation operated at 28 MIPS, was equipped with
32 MBytes of internal memory, and the stations were networked together via thin

wire ethernet.

Programs written in the C programming language by Capt. Law (10), were
modified for this research. The programs, called TRAC_MENU.C and TRAC_PRGM.C are
found in Appendix B.1 and B.2. These programs utilized routines of the KHOROS
image processing software (9) developed by the faculty and students at the University
of New Mexico. While some processing was done within the C programs, their main
purpose was to control the sequencing and flow of routines within KHOROS to

conduct the adaptive correlation process.

3.2 FLIR Images

Two FLIR image sequences were utilized in this research. These images were
taken from a Helicopter Fire Control System (HFCS) FLIR mounted on board a DC-
3 aircraft. These sequences were taken at the Aberdeen Proving Ground, Maryland,
between October 21 and December 4, 1982, between the times of 2000 and 2200

hours. The targets consisted of a T-55 tank and both an M-113 and a TAB-71

armored personnel carrier moving in a columnized formation along a dirt road.

In one sequence the aircraft flew toward the targets perpendicular to their

movement along the road, and in the other the aircraft flew in parallel and from

behmd- tﬂe formation. In both sequences the aircraft flew at approximately 1000

.--_.7-. B SEUEN

feet of altxtude and an operator electro-mechamca.lly steered the sensor to track the
targets from a range of approximately 10 kilometers to 1 kilometer distance. The
FLIR images were provided by the Model-Based Vision Laboratory (WL/AARA).

The images provided were 499x320 pixels in size with 256 gray scale values
available. These images represented approximetely 1 second between frames, or
approximately 65 meters of flight distance per frame. In both sequences the targets
were warmer than the surrounding background, and thus had higher pixel values
than the background data. This made the targets distinguishable by the human
eye from a range of approximately 7 kilometers. In the case where the plane flew
parallel to tbe path of the targets, all three targets appeared close together and

remamed within the sensors FOV for the entire sequence. However, true target

location information was only available down to 2200 meters for Target 3. Therefore,

all tracking information gathered on Target 3 for this sequence ended at this range.
In the case where the aircraft fiew perpendicular to the three targets, the separation
between the vehicles made it impossible to keep all three within the sensors FOV
throughout. the sequence. At approximately 2700 meters one target exited the field of
view, while another exited the FOV at approximately 1900 meters. The final target,
the M-113 armqred personnel carrier, remained in the FOV for the entire sequence.
Example frames from Sequence 1 are shown in Figure 2 and from Sequence 2 in

Figure 3.

For both sequences, information about the true target locations for all targets
was provided by the personnel at the MBV Laboratory for frames between the ranges

of 8 to 1 kilometers. This data was obtained by analyzing each frame and finding the

10

O P e
RS

gg.;;..?:a.\ PR

P

Figure 2. Sample frames from Sequence 1 shown in negative. Images represent
ranges from 8 km (a) to 1 km (h).

11

Tok

e o i
e

o PR o

I ST Y v%-‘"wmi-s.
eI e AP
i it g
Sy g :

Figure 3. Sample frames from Sequence 2 shown in negative. Images represent
ranges from 8 km (a) to 1 km (h).

N

bounding box which encompassed each target entirely. The center of each box was
considered to be the center of the target. This information was used to determine

the error in ﬁnmbem of pixels that the correlation based tracker achieved for each

frame. 37
poat

r P

N

3.3 Coml&tzon Process R . SR -}-’

Thc; adaptwe correlatxon proc%s as 1mplemented by the C language pregrams
was discussed in full deta.xl in Capt Law’s th&sxs (10), and a brief, less detailed
overview is given in this section. This proc&ss ‘remained unchanged during this

research except as noted in later sections of this chapter.

The process began by loading the previous and current frames of the sequence.
Both images were then preprocessed based on the opérator’s selection of built in op-
tions. The template was then removed from the previous frame, and the search scene
was extracted from the current scene, with their sizes dependent on the operator’s
selected optio.nsf The two images were then correlated, and the resulting peak in the
correlation plane was chosen as the location of the target. This location was then
used as the .center for the extraction of the template to be used for the next frame.

This process repeated itself and continued through the entire sequence of images.

For the size of the template and the search scene, the operator had three options
in the original version of the program (10). The sizes were: small (template 30x20,
scene 60x38), medium (template 42x28, scene 116x72), and large (template 64x40,
scene 192x120). These sizes were fixed throughout the correlation process. During
this research two new options were added. For both, the template became adaptive.
That is, the program tried to determine the exact size of the target, and make the
window for the template that same size. In one case, the scene was 60x38, the same
as the original small scene, and in the other case, the search scene became the entire
499x320 frame. During this research. only the two new options were utilized to

compare the results obtained to those obtained by Capt. Law (10).

13

¢t
'-!
!

3

i
s
H

The programs also contained many possibilities for image preprocessing. Ex-

F’_ amples of these _options included: none, threshold bmanzatxon, threshold bma.nza»-

‘ ey ~.'"‘\

tion with gray scale restored image blending, and other combinations. An optxon to

~use an edge extractor (9) a.fter unplexnentmg any of the previous optxous was added

rmw— s

: dunng thxs research Sa.mple images are shown in Figure 4.

- : (a) (®)

Flgure 4. Example image before and after edge extraction (9) shown in negative.
(a.) original image, (b) image after edge extraction.

Under the option of threshold binarization, three possibilities were imple-

mented These are: scene average thresholding, line-by-line thresholding, and Cline)

' ‘thresholdmg Scene average thresholding set to 0 all pixels in the scene that had

va.lues l&ss than the scene average plus an operator set percentage, while setting all
pxxels above that value to 1. Line-by-line thresholding utilized the average of the
eexght in-revxous pixels plus an operator set percentage to determine if a pixel was
v'set to 0 or 1. Cline thresholding made its decision based on the average plus an
operator set percentage of the eight pixels surrounding the pixel of interest. Based
on the results obtained by Capt. Law (10), an operator set percentage of 15% was
always chosen when a binarization technique was utilized. Once binarization had
taken place, grey-scale was restored if the operator desired. This was accomplished
by multiplying pixel-by-pixel the binarized image with the original image. There-
fore, all pixels set to zero through binarization remained zero, while all pixels set

to one through binarization were restored to their original grey-scale values. A flow

diagram of the final program is shown in Figure 5.

14

%

Skip Frames
to Starting Range

Designate Target
Location .

!

Select
Binarization
Option

None

Binarize
w/Grey-scale

Binarize

Select
Binarization
Technique

f

—

Cline Avg

Scene Avg

Line-by-line

Begin Correlation

Option to Start
on Target Center

1

Binarize
Previous and
Curmrent Scene

ot

ifLastF
End

]

Determine Template
Size if Adaptive
Tempiate Chosen

!

Conduct
Edge Extraction
if Chosen

1

Extract

from
Previous Frame

Tempiate

L

1

Correlate
Tempiate w/Scens

A

) 4

4

i Correlation
Fostprocess:

if No Correlation
ng Postprocessing

1

1

Autocorrelate
Template

Tarpet Location
s Larpest
Correiation Plane
Peak

Y

T
s

o Peak H and
Sh-:-w

Location
Match

1

Figure 5. Flow diagram of the correlation based tracker program.

During this research effort, only the following options were used: no image pre-
processing, no binarization with edge extractor, and scene average, line-by-line, and

" Cline 'thresholding all with gray scale restored. The three binarization techniques
* were all implemented to determine which worked best with the adaptive template,
and which generated the lowest average tracking error. Then, the best binarization
Yechnique was compared to no preprocessing, and no binarization with edge extrac-
' tion to'deterﬁliné which image preprocessing technique provided the best overall

tracking performance.

8.4 Walk-off and Error Reduction

Whenever the object of interest is changing its size, shape, or orientation from
frame to frame of a sequence, correlator walk-off will occur. When the template does
not exactly match the target in the search scene, the point where the template best
matches the target may not correspond with the center of the target. This produces

- an error in the correlation. Although this error is a random error, it will continue
‘to add to itself from frame to frame due to the nature of 'the correlation process.
Given enough frames, this error may eventually accumulate to such a point that it

"walks-off” from the target (13).

Also, it was found in Capt. Law’s research (10), that the larger the template
was, the more error that was introduced into the correlation. This was due to
the backgrouhd pixels which were a part of the template when the templaie was
much larger than the target. Just as variz ions in the target from frame to frzine
jatroduced error, so did the background pixels. By eliminating as much of the
background information from the target as possible, the error from frame to frame

could be reduced.

The solution to both of these problems became an adaptive window for creating
the template. A windowing algorithm that found the edges of the target offered

several advantages. First, tz2 target location as determined through correlation was

16

; assumed to be a pixel in the area of the target, but not necessarily the center of
- the ta;rget. After the target had then been windowed by a bounding box, the center
. of that bounding box was considered to be the true center of the target. By doing
. this, the system compensated for the walk-off error encountered from frame to frame,
- and reduced the effects of its accumulation. At the same time, the adaptive window
* reduced the error encountered each time by setting the size of the template to the

size of the target and thus removed excess background pixels which had an impact

on the correlation process.

An added benefit from an adaptive template was in the area of target desig-
nation. Without the adaptive template, if the original pixel location for the target
as designated by the operator was not the true center of that target, error was in-
troduced into the system. Capt Law’s solution (10) was to allow the operator to
select the true center of the target as a starting point because this information was
available to him. Although this allowed him to begin the tracking process without
an 6perator introduced error, it did not represent the real world where a target des-
ignator does not know the exact center location of the target. However, the adaptive
template option did allow the operator to designate any pixel of the target as a start-
ing location, and by bounding the target to select the template, operator introduced

error was reduced if not eliminated.

3.5 Adaptive Template

The algorithm developed to perform the adaptive windowing was based on
previous knowledge of the content of the sequences. Its intent was to validate the
concept and performance improvements that could be attained by having an adaptive
template, not to validate the algorithm developed. Development of a true adaptive

template algorithm which would work for a variety of situations was left as a topic

for future research.

17

Two pieces of prior knowledge allowed the algorithm developed in this research
to work. First was that most of the background pixels had values below 70. Second
was that all of the targets were brighter than the background, and that the majority
of the target pixels had values greater than 70. By utilizing this information, an
adaptxve template algonthm was developed.
the pixel value in the current scene at that location was greater than 70. If it was,
the algorithm assumed that it was part of the target. If not, it assumed the pixel was
near the target and began an outward search for the target. This search included
checking outward in all directions from the current location until the nearest pixel

with a value greater than 70 was found. This pixel was then considered to be part
of the target.

Once a pixel was determined to be part of target, a 3x3 box was drawn around

it. Each side of the box was then checked to see if 957 of its pixels had values less

than 70. If all sides of the box had 95Y% of their pixels less than 70, the windowing

would be complete and the size of the template determined. If not, each side of the
box that did not meet the 95Y criteria was pushed out from the starting location
of the window. This increased the size of the window, but only expanded it in the
directions of the edges of the target from the starting location. Again all four sides
were then checked to see if they met the 95 criteria. Expansion of the window
continued until all four sides met the specified criteria. At that point, the window
matched the actual size of the designated target, .and the center of the window
was then considered to be the true center of the target. The size of the template
utilized for the next frame was also set to the size of the adaptive window. Figure 6
provides an example of the process. This figure demonstrates the whole process of
starting with a pixel off of the intended target, to finding the nearest target pixel, to
expanding the window until all sides meet the 95Y criteria. Figure 7 shows examples

of adaptive templates taken with various preprocessing options.

18

The algonthm began by checking the location of the correlatlon peak to see if

TEE o b)

() (d)

Figure 6. Adaptive template windowing process. (a) correlation peak location not
on target, (b) process finds nearest target pixel, (c-g) window expands
in each direction that contains greater than 95 percent target pixels, and
(h) window process encompasses entire target.

19

g

el

N
—— o

(a) (b) . ()

;

R ST ‘ '
faadt e o oL -

(e)

Figure 7. Sample templates from (a-c) Sequence 2 and (d-f) Sequence 1 shown in
negative. (a,d) show edge extraction, (b,e) represent no image prepro-
cessing, and (c,f) represent scene averaging with grey-scale restored.

8.6 Distinguishing Between Multiple Targets

In his research (10), Capt. Law restricted the search scene for each frame to
- 'a subimage of the full frame. The size of the subimage was based on the option
of small, medium, or large selected by the operator. His research found that the
smaller the search scene, the better the performance of the system. The reason the
system worked better with a small search scene was because it reduced the number
of targets in the search scene. As mentioned in Chapter 2, when multiple targets
of differing brightness are in the search scene, problems may be encountered when
trying to track a target which is not the brightest. This problem occurred because
the brightness of pixels can outweigh the match in shape in the correlation process,
resulting in the highest correlation peak on the brightest target. This caused the
correlator to shift its track from the designated target to the brightest target in the
FOV.

The shift in tracking to the brightest target produced a problem in how to
maintain track on targets which are not the brightest target in the FOV. Analysis of

the correlation plane showed that although the brightest target produced the largest

20

peak, other, smaller peaks did exist at the locations of the other targets and at
ma.‘ny'lc;cations in the background. Therefore, the problem became how to identify
the"prope‘.r ;;ea.k in the correlation plane, not just the tallest peak. Postprocessing of
the correiation plane information yielded promise in solving this problem. However,
littie has been reported in the area of correlation postprocessing (8). The research
that has been reported (12) (14) (15)' bas all dealt with identifying a target that
has been scaled or rotated, and not in distinguishing between multiple targets of the

same shape.

3.6.1 Template Autocorrelation When the amount of time between frames in
a sequence is small enough that the objects being tracked do not change much in
size, shape, or orientation, then the template holds more information than the shape
and brightness of the target. Since the target in the current scene was expected to
look similar to the object in the template, then the size and shape of the template
. correlated with the target wa;s expected to look similar to the size and shape of the
_ template correlated v;'ith itself. Taking advantage of this information became the

" focus of the rest of this research effort.

" However, it should be noted that the template autocorrelation utilized was not
" a true autocorrelation. If the template had only been correlated with itself, then
as soon as the template was shifted off center, the energy in the correlation plane
would drop dramatically. This would not be representative of what happened when
the template was correlated with the scene because the background surrounding the
target was not being considered in the shape of the correlation peak. Therefore, two
templates were extracted. The first template was the true template which was to be
correlated with the next scene. The second template was a copy of the first temp]aie,
only expanded an additional three pixels in each direction. When it came time
for template autocorrelation, the true template was correlated with the expanded
template. This allowed the background surrounding the template to influence the

correlation plane information. The resulting correlation plane peak’s height and

21

shape were then more representative of what was expected when the true template

was correlated with the next scene.

3.6.2 Correlation Peak Identification In his thesis (14), Troxel investigated

the use of correlation information for pattern recognition of targets. Because he’
-experienced some success with his process, the methods utilized by Troxel became

the starting point in this research for identifying the proper peak in the correlation

plane.

The method (14) began by extracting the 7x7 window of pixels around the peak
of the autocorrelation plane. Each pixel was then normalized by dividing it by the
square root of the sum of the squares of each point in the 7x7 window. The data was
considered to be a vector in 49 dimensional space, and Lt. Troxel then used a distance
measurement to try to determine the identity of the target. Based on this method,
a 7x7 window was extracted around each peak in the correlation of the template
with search scene. Each window was normalized in the manner described, and the
Euclidean distance between that peak and the peak of the template autocorrelation

was measured. Euclidean distance was based on

i

49 2
D= (Z (21— Izi)2) (3)
i=]

and the peak with the smallest Euclidean distance from the template autocorrelation

was considered to be the location of the designated target.

This method was tested, but did not perform correctly. At some point in each
sequence for every target, the system still switched from the target of interest to one
of the other targets. The reason for this was that the normalization process removed
target brightness information, and therefore, the comparison was being based only
on the shape of the object in the search scene. Because there were some changes in

size, shape, or orientation in the designated target from frame to frame, situations

22

Y

were being created where the appearance of a target in the past scene looked more

like another target than itself in the current scene.

To introduce the brightness of the target as a factor in peak analysis, the nor-

malizaiion of the 7x7 pixel array was removed from the process. However, when the

"”- unmodified 7x7 windows were used for comparison, error were still encountered in

“the tracking prSéess. These errors did not shift to other targets often, but instead
were shifting to areas in the background pixels. This was a step in the proper di-
rection because the system was distinguishing between targets, but the system still
needed refining. Areas in the noise that were relatively flat were encountering small
distances between the outer pixels of the 7x7 window, but were not matching well
near the peak. But the match at the outer pixels was outweighing the mismatch
near the peak and these areas were yielding smaller distances than the actual peak
of interest. A conceptual, 2-dimensional example of what was encountered is shown
in Figure 8. In this figure, (a) represents the template autocorrelation, (b) repre-
sents the matching of (a) with the template-target correlation, and (c) represents
the matching of (a) with template-noise correlation. It can be seen from Figure 8
that even though the template-target correlation matched the shape of the template

- autocorrelation better than the template-noise correlation, the template-noise corre-

lation would yield a smaller distance from the template autocorrelation than would

the template-target correlation. This would cause the tracker to begin tracking on

background noise.

The next step was to place weighting factors on the distances between individ-
ual pixels so that matching near the peak was more important than matching near
the edges of the 7x7 window. This yielded the weighted Euclidean distance metric

i
3

48
D= (Z w, (1) — 12.’)2) (4)

1=]

S/ templaté autocorrelation

(a)

J/ template autocorrelation

template-target
correlation

.
e,
......
-
.....
e
-
Yesa
L2
...........
.....
-e

)
o
.
-
.
.
.
.
»
.
o
»
»
.
»
»
»
.........
ses®

(b)

template autocorrelation
/

template-noise
correlation

:
Scee..
.......

.
.
-
.
ccccc
-
ce®
.®

(©)

Figure 8. Correlation peak matching. (a) template autocorrelation, (b) compari-
son with template-target correlation, (¢) comparison with template-noise

correlation

where w; is the weighting factor. The weighting factors were chosen to stress the
number of rows and columns of offset that each pixel in the 7x7 window represented
in the correlation plane. In Figure 9 below, the total number of rows and columns of
oﬁ";set for each pixel in the window is shown, with the center pixel representing zero

or ‘perfect match of the data.

I
M

O)UIAOJAU\O;l
(6 I AN VAR NG
PBON2ANWH
wro-so—&roiw
PAON=2NDWH
I AN VAN NG
oONbwWhOO

Figure 9. Correlation offset versus pixel location..

Based on this, it was decided that pixels representing equal amounts of offset
should be weighted equally. It was also chosen that each step closer to zero offset
should be weighted twice the amount of one more offset. This yielded the set of
weight factors in Figure 10. This set of weighting factors was tested, and still errors

existed.

Analysis of the points which caused errors showed that the most important
pixel in identifying the proper peak should be the height of the peak or center pixel
itself. However, a look at the above weighting factors shows that the outer ring,
representing the most offset, has a combined weighting of 84. The next ring has a
combined weighting of 144, the third ring has a weight 192, and the peak has only a
weighting of 64. Therefore, although the center pixel had the greatest weighting, it

was still not as important to the total distance as the outermost ring. This created

25

1 2 4 8 4 2 1|

2 4 8 16 8 4 2
- 4 8 16 32 16 8 4
8 16 32 64 32 16 8
o e 2 4 8 16 32 16 8 4
2 4 8 16 8 4 2
B 1 2 4 8 4 2 1

Figure 10. Pixel weight factors, Set 1.

the problem that the height of the peak was still not as important as the shape of
the peak.
Finally, a weighting method which emphasized the height as much as the shape

was introduced. The idea was to make the center weight slightly greater than the
- combined weighting of the rest of the pixels. This yielded the weighting system in

Figure 11.

2 4 8 4 2
4 8 16 8 4
8 16 32 16 8
16 32 448 32 16
8 16 32 16 8
4 8 16 8 4
2 4 8 4 2

= NDAhODN—=
- NDLbOAN=

Figure 11. Pixel weight factors, Set 2.

As will be shown in Chapter 4, this weighting system was quite effective. Some
errors were still encountered which leaves open the reevaluation of the weighting

factors for future research. Most of the errors were due to the fact that no point

26

/
'S

had a very good match to the template autocorrelation peak. Because of this, the
first fallback measure was introduced. When the distances measured for good tracks
were evaluated, they all seemed to fall under certain value. Therefore, this value
was multiplied by 10, and if no distances were measured less than that value, then
the program assumed it had not found the target, and chose the targets last known
location as its current location. This compensated for all of the errors encountered
that were not corrected by the final fallback measure discussed in the next section.

This allowed the system to continue tracking the proper target in all cases.

To validate this concept of a correlation postprocessing algorithm, several im-
ages not from the two sequences were chosen to see if the algorithm could find the
designated target. In each case, the location of the target, as well as the box en-
compassing the target, were given. The box encompassing the target was used as
the true template, and all template autocorrelations and template-scene correlations
were performed within Khoros (9), and the correlation plane information was stored
in files. The postprocessing algorithm was then implemented in a small C language
program called COR.C (see Appendix B.3), which read in the correlation files and

processed them to determine the location of the target.

The images used to validate this algorithm, along with the templates extracted,
are shown in Figures 12, 13, and 14. These images include airplanes, trucks, and
tanks as tfle target of interest. In the images which have airplanes or trucks, the
target were brighter than the background, and thus a peak was expected at their
location in the correlation plane. In the case of the images which had a tank as
the target, the tank was not brighter than the background. Therefore, no peak in
the correlation plane was expected. However, the height and shape of the template
autocorrelation still could be used to try and locate the target within the scene. In all
cases, the correlation plane postprocessing algorithm determined the exact location

of the designated target.

27

(a) (b)

Figure 12. Images and associated templates containing an airplane used to validate
the correlation plane postprocessing algorithm.

(a) (b)

Figure 13. Images and associated templates containing a truck used to validate the
correlation plane postprocessing algorithm.

Figure 14. Images and associated templates containing a tank used to validate the
correlation plane postprocessing algorithm.

29

8.7 Tracking Other Targets

An area of particular interest in this research was the ability to properly locate
and track the locations of other targets in the search scene. The motivation for this
ability was for the system to be capable of identifying, through pattern recognition,
.- the target being tracked plus all other potential targets within the sensor’s FOV. The
system could then distinguish between high and low priority targets, and eventually
change track to the highest priority target found. Although the ability to identify
other targets and change track to a higher priority target was not investigated in
this research, the ability to locate other targets in the search scene was investigated.
Because the method of pattern recognition developed by Lt. Troxel (14) was very
effective in identifying shapes without reference to object brightness, it was utilized

as a means of identifying other potential targets in the search scene.

The search for other targets was conducted within the algorithm at the same
time as the search for the actual target of interest. As described earlier, a 7x7
window of correlation information was extracted around each peak, the pixel values
were normalized, and the distance from the 7x7 window of information generated
by the autocorrelation of the template was determined. The algorithm stored the
locations of the ten best matches within the search scene. These locations were
then compared to the 10 best matched locations found in the previous scene. If any
location from the search scene was within 20 pixels (a large amount of movement
from frame to frame) of a stored location from the previous scene, the algorithm
considered that location to represent a potential target. These locations were stored
in a file by the program, and were later compared to the known locations of the other
targets in the sequences to determine if the method of target location identification

was successful.

Based on the relative success of this algorithm, the final fallback measure was
introduced. Once the program had located the target and the ten potential target

locations in the search scene, a comparison was conducted to determine if any of the

30

potential target locations were closer to the last known location of the target being
tracked than the location as determined by the tracker. Because the time between
frames did not allow for significant changes in object position, a potential target
located closer to the last known location of the target was assumed to be the real
target of interest. This fallback measure was effective in removing most of the errors

encountered by the adaptive correlation tracker.

8.8 Correlation Information

During the execution of C language programs, several important pieces of
information were stored in files. In total, four files of information were created
during each run of the program. One file contained the range and locations of other
potential targets as found in the method described in the previous section. Another
file was generated containing range and pixel error information only. This file proved
valuable in generating the plots found in Chapter IV of this thesis. The third file

contained range versus target location data.

The fourth file created was the main information file. This file contained
the range of each frame, the location of the target as determined by the adaptive
" correlation tracker, and the actual location of target as determined by the MBV

Laboratory. Also included in this file was the pixel error as determined by

Error = \/(:c,mk ~ Tirue)’ + (Ypeak = Ytrue)’ (5)

and the error direction. Error direction was given in degrees and was measured
from the horizontal. Values ranged from 0 to 180 degrees, and 0 to -180 degrees.
Finally, the distance between the template and scene correlation and the template
autocorrelation was saved. This value was normalized by the height of the template
autocorrelation peak to allow for smaller values and to allow comparisons from frame

to frame. In the cases where correlation peak location only was used to determine

31

target location, this measurement was saved with a value of zero. This measurement
was also used to indicate when the program had relied on a fallback measure to
maintain proper track. In the case where a location identified as a potential target
was selected as the true target, this measurement was given a value of 50. And in

N o -))
" the case of no true target being found, this measurement was given a value 100.

SQWIETG LT L
' 3

3

73 0" Summary

B This chapter has described the methodology implemented in the adaptive cor-
relation tracking process. The hardware and software, as well as vne specifics of the
FLIR images utilized in this research were discussed briefly. The new algorithms and
procedures adapted to the existing C language programs, along with justification for

their use were presented in detail. And the execution of the programs was discussed.

Chapter IV will present the results obtained by the tracking programs, as well
~ as an analysis of the results. Chapter V will present the conclusions reached through

this research effort, and will recommend areas for further study.

32

IV. Results and Analysis

Th‘is chapter presents the results obtained by the adaptive correlation tracker,
as well as a comparison and analysis. In particular, a comparison of image prepro-
cessing techniques when used with the adaptive template, as well as a comparison of
adaptive and set size templates is given. Also presented is the results of correlation
plane postprocessing to improve tracking performance. Finally, results of the ability
to properly locate other targets in the FOV are presented.

4.1 Comparison Criteria

For each tracking run generated by the adaptive correlation tracker, the data
utilized for comparison was the error in pixels achieved for each frame. This value
represented the distance in pixels from the true center of the target of interest to the
target location as determined by the tracker. Figures 15 and 16 demonstrate how
error effected tracking by showing two tracks of eight consecutive frames of the same
target. In Figure 15, Sequence 1, Target 2 was tracked utilizing line-by-line averaging
with grev-scale restored, small template and search scene, target location based on
largest peak in the correlation plane. In Figure 16, the same target was tracked
utilizing no image preprocessing, adaptive template with full scene searched, and
correlation plane postprocessing to determine the location of the target. Figure 15
(a-c) show the target being tracked to within 5 pixels of true center; in (d-f), the
tracker begins to drift forward of the target’s true center with errors between 5-10
pixels; and finally in (g-h), the tracker loses the target with errors between 30-40
pixels. In Figure 16, (a-h) show the target being tracked within 3 pixels of true center
through the whole series of frames. In all cases, tracking began on the true center
of the target in the first frame so that no initial bias was introduced. Therefore,
all tracking errors encountered could be attributed directly to the tracking method

utilized. This was done to make a comparison between basing target location on the

33

correlation peak with set template and scene sizes, and finding the proper correlation
peak through postprocessing in conjunction with an adaptive template and full scene
search. As can be seen in Figure 17, the method which utilized set template and
scene sizes, along with basing target location on the location of the highest correlation
peak was very sensitive to initial error offset when tracking, while the method which
utiliied an adaptive template and correlation plane postprocessing to find the proper
pe#k in the correlation plane which represented the designated target was extremely

insensitive to an initial error bias.

4.2 Thresholding Technigue Comparison

To determine which thresholding technique worked best with the adaptive
template, all three targets of Sequence 1 were tracked using the adaptive template
with the small search scene option. This meant that target location was based only on
the location of the tallest peak in the correlation plane. The thresholding techniques
compared were scene averaging with grey-scale restored, Cline averaging with grey
scale restored, and lin.e-by-line averaging with grey-scale restored (see Section 3.3
for details). The option to restore grey-scale in all cases was used because Capt.
Law (10) had found this worked best for the correlation based tracker. In Figure 18,
(a) represents target 1, (b) target 2, and (c) target 3. For each target, the tracks
by all three thresholding techniques are shown. Even relatively small pixel errors
can effect the ability of the tracker to remain on target. In Figure 19, an error
of approximately eight pixels in (a) still remains on the target, while an error of
approximately twelve pixels in (b) shows that the tracker clearly has left the target.
The average error versus thresholding technique for each target is shown in Table 1.
Based on the average errors encountered, along with the error for each target at
the final frame, scene averaging with grey-scale restored was chosen as the best
binarization technique to use with the adaptive template. It was therefore the only

binarization technique compared with no image preprocessing, and no binarization

34

42

(h)

Figure 15. Tracker losing Sequence 1, Target 2 while utilizing line-by-line averag-
ing with grey-scale restored, small template and search scene, target
location based on largest peak in correlation plane. Track shows eight
consecutive frames. (a-c) target is tracked within 3 pixels of true cen-
ter, (d-f) error increases to between 5-10 pixels of true center, (g-h)
algorithm loses track of target, errors between 30-40 pixels.

35

Figure 16.

Good track of Sequence 1, Target 2, utilizing no image preprocessing,
adaptive template with full scene searched, correlation plane postpro-
cessing to determine target location. Track shows eight consecutive
frames. (a-h) tracks target to within 3 pixels of true target center for
all frames.

36

e
-

oo
¥
Emer iy Phuse
L
Ervn iy Phubs

Range m)
(a)
" h r
i\ AT
ut A e vy
y SNV Vi - i
o Tiomd nf i Sy
1 i. W
r rs —wmnu—w
£ s o = Wih nbial erver bine
L]
3 4
. [
P BN D 4N OGN NE B AN N W DD
Rarge (m)
ti .
. (c) (d)
“ o WARCAL inin) erver bl
—— W initei errer bine
L 1
- . o P)
! l " ,“,_.”'”'-' ¥ ‘~.~'-¥_ . {
5 wl = “"_.,";‘"-..” Vo
of |
“.
o
l.- E - L] b o o -0 o iy] L] L4 o= -
Range (m)
(e)

Figure 17. Effects of introducing an error in the initial designation of the target.
(a,c,e) no image preprocessing, adaptive template with full scene search,
correlation plane postprocessing, (b,d,f) line-by-line binarization with
grey-scale restored, small template and search scene, target location
based on highest correlation peak. (a,b) Sequence 1, Target 1, initial
bias of 4.47 pixels (¢,d) Sequence 1, Target 3, initial bias of 11.18 pixels
(e,f) Sequence 2, Target 1, initial bias of 11.66 pixels.

37

1.
¢ ——— Soene Averagi
16} i Ciline o A
i — Averaging
e} ..:: m———— Lney-line Aweraging B
s 13t s)
SR O I S '
! ;§ . T ap .: r E': :. H ! h
'y J " E & 3 -
ap X T
fboo 2000 3000 *Go0 000 @000 J000 8000
. Range (m)
(a)
200
180 — BOGN® Averaging o
— Cline Averaging
web e Line-by-line Averaging -
1e0 A i
i H .
& oot . i
B]
13 .'.,: -
a0t i h
20 - . .. 7
° e e N NS A N i
() 31000 2000 3000 4000 3000 000 7000 S000
Range (m)
(®)
12
—— SOeNe Averaging
10}h — Cline Averaging -
...... Line-by-line Averaging
sb o
£ i
5 - 4
a2t o
:?soo 3000 3300 4000 4300 S000 3300 SO00 4300 000 7300
Range (M)
()
Figure 18. Comparison of thresholding techniques in range versus error for Se-

quence 1 (a) target 1, (b) target 2, and (c) target 3. All tracks ac-
complished with adaptive template, full scene searched, and correlation
plane postprocessing to determine target location.

38

Figure 19.

Effect of error on tracking ability. (a) an error of approximately eight
pixels remains on target, (b) while tracking another target, an error of
approximately twelve pixels is clearly off target.

39

W

g

with edge extraction in this study. It was chosen because it had the lowest average

~ errors, along with the smallest average error in the final frame. This differed from

the results obtained by Capt. Law (10) when a set template size was used. For a

set template, line-by-line averaging with grey-scale restored was judged to yield the-

best results. - - < -~

i .

) . :

Table 1. Average tracking error in pixels versus thresholding technique for each
target of Sequence 1 (see Figure 2). Average based on average error over

entire track from approximately 7.5 km distance to terminal.

Thresholding Technique Average Error in Pixels
Target 1 | Target 2 Target 3
Scene Averaging w/grey-scale restored 2.67 6.22 2.81
Cline Averaging w/grey-scale restored 3.89 12.67 2.96
Line-by-line Avg w/grey-scale restored 3.42 780 2.96

4.3 Tracking in the Presence of Multiple Targets

When using the location of the tallest peak in the correlation plane for tracking
in a sequence where multiple targets are present and close together, the tracking
system often changed track to the brightest target in the sensors FOV. As was
stated in Section 3.2, there is no error data available for Target 3 closer than 2000
meters. For this data, all three targets of Sequence 2 were tracked using the adaptive
template with small search scene option, and scene averaging with grey-scale restored
image preprocessing. In the case of Target 1, the track had only small errors, but
for Targets 2 and 3, the errors began much higher and remained higher. This can be
seen in Figure 20. This occurred because the tracker immediately began driftiné to
Target 1, the brightest of the three, starting in the first frame no matter which target
was designated. This is shown in Figure 21. Essentially, this was the same result

as would be expected if a hot-spot tracker had been used. Since Target 1 in both

40

'ﬁsequences was much brighier than the other tviro, any hot-spot tracker utilizing the
full scene as a FOV would track Target 1 no matter which target had been originally

designated.
100
so — Target 1
sob o= Tarpet 2
' Yo e T.fp.t 3
ke A -
g SO -t : .' -
= Sof .
B]
30 .
20 R <
10 b U .
o
1000 6000 ‘7000
Range (M)

Figure 20. Tracking of targets in Sequence 2 without correlation postprocessing.
Tracking of Target 3 ended at 2000 meters due to lack of true target
location information at closer ranges.

. Todemonstrate the ability of the correlation plane postprocessing technique to
track a target in the presence of multiple targets, tracking runs on all three targets
| in each sequen'ce were accomplished. These runs utilized the adaptive template
and searched the entire frame for the proper target. Runs on each target were
accomplished using scene averaging with grey-scale restored, edge extraction, and
no preprocessing of the original images. Error versus range for each run is shown in
Figure 22 for scene averaging with grey-scale restored, Figure 23 for edge extraction,
and Figure 24 for no preprocessing. In each figure, Sequence 1 targets 1-3 are found
in (a-c), and Sequence 2 targets 1-3 are found in (d-f). The symbols x and o were
placed on these graphs to indicate a frame where a fallback measure to maintain track
was utilized. The presence of an x indicates that the target location determined by
the adaptive correlation postprocessing algorithm was not the designated target.

However, as mentioned in Section 3.7, one of the locations designated as a potential

41

Figure 21.

Drift of correlation peak tracker to Target 1 in Sequence 2 when either
Target 2 or 3 was designated. (a) track point at 5980 meters when Target
2 designated, (b) track point at 1050 meters when Target 2 designated,
(c) track point at 5980 meters when Target 3 designated, (d) track point
at 2140 meters when Target 3 designated.

42

\/ﬁ

target was judged to be the proper target. The potential target was chosen as the true
location of the designated target because it was closer to the last known location of
the designated target in the previous scene than the location of the object chosen to
be the target in the current scene. The presence of an o indicates that no correlation
peak match was attained, and the algorithm considered the known location of the

target in the previous scene as its new location in the current scene.

Figures 22, 23, and 24 indicate that in all three preprocessing techniques uti-
lized the adaptive correlation tracker with correlation plane postprocessing was able
to accurately track the designated target even in the presence of other, similar tar-
gets. However, a major distinguishing factor between the three preprocessing tech-
niques was in the number of frames in which the wrong target was originally chosen
and a fallback measure had to be utilized. Table 2 compares the number of frames
in which the fallback measures were utilized for each image preprocessing technique.
In Table 2, data is given in the form of ’x/y’ where x represents the number of
frames where the actual target was chosen from the pool of potential targets, and y
represents the number of times that no target was found and the last known location

of the target was utilized.

In the area of tracking and average tracking error, both the edge extrac ion and
no preprocessing of the images performed equally well. The option of scene averaging
with grey-écale restored did perform well on Sequence 1, but did not perform as well
on Sequence 2. However, when the number of frames which utilized fallback measures
was taken into account, the option of no image preprocessing was clearly the best of
the three options. This option was able to distinguish between multiple targets in
the sensor’'s FOV, while also maintaining very accurate tracking on the designated
target. An added benefit of this option was the reduced processing time required

when the frames were taken in their original form without data reduction.

43

Emvor s Pouh

2 1

Ervor Pl

T”-”-‘.—”-“_”.
Rarge (m)

-+ Range (m)

()

(d)

Eror In Phebs

@

4

3 4

Rarge (m)

{e)

Figure 22.

Range versus error tracking based on correlation plane postprocess-
ing using scene-average w/grey-scale restored image preprocessing. - Se-
quence 1, (a) target 1, (b) target 2, (c) target 3, .nd Sequence 2 (d)
target 1, (e) target 2, (f) target 3. An x indicates the selected target
was not originally located, but was chosen from the potential targets,
while an o indicates that no target was found and the tracker used the

last known location of the target.

44

o '
3 3
b i,
NN XS Ns an sSm ew NN e I — R — ey
Aarge im) Rerge (m)
(a) (b)
L, 3
k E,
A Em Bm e o6 em Do w0 O® wE B b5 Wor s eesc) -m e -
Range (m) Rarge (M)
(c) (d)
- i, |
B’ k.
fh o0 X0 - ooe L R .i' PO MED IO AW 0 N0 ¥ MR e
Rarge (m) Range (m)
(e) U]

Figure 23. Range versus error tracking based on correlation plane postprocessing
using edge extraction image preprocessing. Sequence 1, (a) target 1,
(b) target 2, (c) target 3, and Sequence 2 (d) target 1, (e) target 2, (f)
target 3. An x indicates the selected target was not originally located,
but was chosen from the potential targets, while an o indicates that no
target was found and the tracker used the last known location of the
- target.

45

v

. s "
say 8s i
ST TI ‘)
s leitun ! % !
totergizi || ,[.‘ s b
S '
[}
e T ee e ee e e | R me e e e e e
Pangs (m) Parge (m)
(a) ®)
» 3
]
1 ! 15
. &
B B
w . w
3 " J
Aa e NE a% Gx o Be em on e B W me o aw mo e we Be
Range (m) = Farge (m)
() (d)
3
”» 3
[s
P L,
g ¢
4 15
"MJK l
tom o0 e -x o 4000) Yon P me B e o8 ww Do s Bo
Rarge (m) Rarge (m)
(e) U]
Figure 24. Range versus error tracking based on correlation plane postprocessing

using no image preprocessing. Sequence 1, (a) target 1, (b) target 2, (c)
target 3, and Sequence 2 (d) target 1, (e) target 2, (f) target 3. An x
indicates the selected target was not originally located, but was chosen
from the potential targets, while an o indicates that no target was found

and the tracker used the last known location of the target.

46

N

NAN

Table 2. Comparison of number of fallback measures utilized for each image pre-
processing technique with correlation plane postprocessing. Data is in
b the form x/y. An x represents the number of frames where the target

. location determined by the tracker was not the designated target, but the
. designated target’s location was selected from the pool of potential tar-
© gets based on its being closer to the last known location of the designated

target than the location determined by the tracker. A y represents the
number of frames where no target was found. Tar 2-1 is used to designate
Sequence 2, Target 1.

Image Preprocessing Number of Fallback Measures Utilized

Tar 1-1 | Tar 1-2 | Tar 1-3 | Tar 2-1 | Tar 2-2 | Tar 2- 3
Scene Ave. w/grey-scale [0/0 0/1 0/0 4/1 8/0 8/0
Edge Extraction 12/0 1/0 22/0 37/2 1/5 1/0
None 0/0 1/0 0/0 0/0 9/0 7/0

4-4 Error Reduction and Walk-off

One of the main goals of this research was to reduce the error encountered by
Capt. Law during his research (10), while also addressing the problem of correlator
walk-off. Figure 25 compares the tracking achieved by the option implemented by
Capt. Law, and the best tracking achieved during this research. For the comparison,
tracking based on line-by-line averaging with grey-scale restored, a small template
with small scene, and target location based on the largest peak in the correlation
plane (10), was used to represent Capt. Law’s research. As stated in Section 4.3, no
image preprocessing, with an adaptive template, full scene search, and correlation
postprocessing was chosen as the best option for this research. Table 3 compares the
average error achieved by each method for each target, and Table 4 compares the
final error achieved by each method for each target. For the rest of this section, the
term 'LineAv/GS res’ will be used to represent line-by-line averaging with grey-scale
restored, small template and search scene, target location based on highest peak

in the correlation plane (the best results obtained by Capt. Law), and the term

47

'NoPre/AdFull/Post’ will be used to represent no image preprocessing, adaptive

template with full search scene, and correlation postprocessing (the best results

obtained during this research).

Table 3.

o cessmg (NoPre/Adl'\lll/POSt)

Average tracking error in pixels for research comparison. Comparing line-
by-line averaging with grey-scale restored, small scene and template, lo-
v cation based on largest correlation peak (LineAv/GS res) and no image .
P .preprocessmg, adaptive template with full scene, and correlatxon postpro-

Research Average Error in Pixels

Targ 1-1 | Targ 1-2 | Targ 1-3 | Targ 2-1 | Targ 2-2 | Targ 2-3
LineAv/GS res 3.7 9.95 3.71 337 2257 30.70
NoPre/AdFull /Post 2.99 1.32 3.19 1.03 1.93 1.56

Tab‘e 4 'Final error comparison of research efforts. Comparing line-by-line aver-

‘aging with grey-scale restored, small scene and template, location based

-- -~ -on largest correlation peak (SceneAv/GS res) and no image preprocess-

ing, adaptive template with full scene, and correlation postprocessing

(NoPre/AdFull/Post).
Research Final Error in Pixels
Targ 1-1 | Targ 1-2 | Targ 1-3 | Targ 2-1 | Targ 2-2 | Targ 2-3
LineAv/GS res 13.15 109.41 8.54 19.66 69.70 62.32
NoPre/AdFull/Post 2.55 0.71 10.20 1.00 1.00 1.00 |

Analysis of Table 3 verified that the average error encountered while tracking

had been reduced for all three targets in both sequences. The average error improved

from the Capt. Law's research to this research an average of 63%. This represented

a significant improvement in tracking performance.

As mentioned earlier, correlator walk-off can be attributed to the differences

in the target from frame to frame. Because this error is random in nature, its effects

18

N

Atie o~

:._ P !
RIS !
; — NoPrMdF A Pun
LJ '.é = Linale/Ol e
1 1 [}
r 6 I I.g 4
L. L
LA A .
v o ta AT
’ d VT T]
o Rangs $m) Fangs (m}
L (c) (d)
[' — NoPre/AdF A/ Post ot - NoPro/AdFuliPost
->' — LineAw/aS res '-.._: = UnaAw/GS ne
r -, 2 » - - —N 4
.E : et aE N - h-"x\ |
Range (m) Rerge (m)
(e) n
Figure 25. Comparison of best tracking results obtained by Capt. Law (10) us-

ing line-by-line averaging with grey-scale restored, small scene and
template, and target location based on largest correlation peak (Lin-
eAv/GS res), and this research utilizing no image preprocessing, adap-
tive template with full scene, and correlation plane postprocessing (No-
Pre/adFull/Post). Sequence 1, (a) target 1, (b) target 2, (c) target 3,
and Sequence 2 (d) target 1, (e) target 2, and (f) target 3.

49

are cumulative. In the situation encountered in this research, where the sensor
platform was moving towards the targets, the effects of walk-off can become even
more prominent as the distance between platform and target decrease because the
amount of change from frame to frame becomes greater. As seen in Table 4, the error
encountered in the final frame was very large, and often many times greater than
the average error per frame. This was a strong indication that walk-off was having
a significant effect on the tracker's performance. On the other hand, Table 4 shows
that the final error encountered in the new research was very low for all but one
target, and that for all but that target the final error for each target was less than
the average error encountered while tracking that target. The final error encountered
for Sequence 1, target 3 can be attributed to the way in which the target left the
sensor's FOV. Because this exit occurred over several frames, it introduced large
changes in the targets size and shape from frame to frame. This can be seen in

Figure 26. However, the overall results obtained in the new research indicated that

walk-off was not a significant factor in the ability of the correlation based algorithm -

to track.

In order to fully understand how all this data effects tracking per'formance;

snapshots were taken of the tracking of each target utilizing both line-by-line av-
eraging with grey-scale restored, small template and search scene, target location
based on highest correlation peak, and no image preprocessing, adaptive template
with full scene search, with correlation plane postprocessing to determine target lo-
cation. These snapshots were taken at approximately 6000 meters range, and the
final frame of each target in each sequence. The snapshots, shown in Figures 27, 28,
29, 30, 31, and 32 clearly show the difference in tracking ability between the two

methods.

50

~

(

ik
B i

Figure 26. Frames showing the departure of Sequence 1, Target 3 from the sensor’s

FOV.

Figure 27.

Snapshots of tracking Sequence 1, Target 1 using (a,c) no image prepro-
cessing, adaptive template with full scene search, and correlation plane
postprocessing to determine target location, (b,d) line-by-line binariza-
tion with grey-scale restored, small template and search scene, target
location based on highest correlation peak. (a,b) taken at range of 6010
meters, (c,d) final frame of designated target.

(&1
(3%

/!

Figure 28.

Snapshots of tracking Sequence 1, Target 2 using (a,c) no image prepro-
cessing, adaptive template with full scene search, and correlation plane
postprocessing to determine target location, (b,d) line-by-line binariza-
tion with grey-scale restored, small template and search scene, target
location based on highest correlation peak. (a,b) taken at range of 6010
meters, (c,d) final frame of designated target.)

Figure 29. Snapshots of tracking Sequence 1, Target 3 using (a,c) no image prepro-
cessing, adaptive template with full scene search, and correlation plane
postprocessing to determine target location, (b,d) line-by-line binariza-
tion with grey-scale restored, small template and search scene, target
location based on highest correlation peak. (a,b) taken at range of 6010
meters, (c,d) final frame of designated target.

(©)

Figure 30. Snapshots of tracking Sequence 2, Target 1 using (a,c) no image prepro-
cessing, adaptive template with full scene search, and correlation plane
postprocessing to determine target location, (b,d) line-by-line binariza-
tion with grey-scale restored, small template and search scene, target
location based on highest correlation peak. (a,b) taken at range of 5980
meters, (c,d) final frame of designated target.

Figure 31.

Snapshots of tracking Sequence 2, Target 2 using (a,c) no image prepro-
cessing, adaptive template with full scene search, and correlation plane
postprocessing to determine target location, (b,d) line-by-line binariza-
tion with grey-scale restored, small template and search scene, target
location based on highest correlation peak. (a,b) taken at range of 5980
meters, (c,d) final frame of designated target.

56

Figure 32.

Snapshots of tracking Sequence 2, Target 3 using (a,c) no image prepro-
cessing, adaptive template with full scene search, and correlation plane
postprocessing to determine target location, (b,d) line-by-line binariza-
tion with grey-scale restored, small template and search scene, target
location based on highest correlation peak. (a,b) taken at range of 5980
meters, (c,d) final frame of designated target. :

3
=1

4.5 Locating Other Targets

While the targets were being tracked using correlation plane postprocessing,
the method of pattern recognition developed by Lt. Troxel (14) and discussed in
Section 3.7 was utilized to try and determine the locations of other potential targets

- within the sensor’s FOV. For & location to be considered a potential target, it must

have been within a small number of pixels of a location found by this method in .

the previous frame. Again data was collected for three image preprocessing options.
These options were scene averaging with grey-scale restored, edge extraction, and no
preprocessing. For each of these, the percentage of frames in which each target was
correctly located as a potential target while another target was being tracked was
determined. Table 5 shows the results that were obtained when scene averaging with
grey-scale restored was utilized. Table 6 contains the same data for edge extraction,

and Table 7 contains the data for no image preprocessing.

Table 5. Percentage of frames where other targets were located when scene aver-

aging with grey-scale restored was utilized.

Target Tracked Other Targets
Target 1 | Target 2 | Target 3
Sequence 1, Target 1 - 89% 90%
Target 2| 57% 58%

Target 3| 44% 35% -
Sequence 2, Target 1 - 35% 79%

Target 2| 68% - 37%

Target 3 | 68% 37% -

Tables 5, 6, and 7 show that while this method of other target identification
was not overly successful in all cases, it was able to correctly locate many of the other
targets in excess of 75% of the sequence frames. As was mentioned in Section 3.7,
other target location was dependent on having identified the location of that target

as a potential other target in the previons frame. Therefore, this algorithm did not

o8

ES 05 7.3 JUEUG B SRR T

;2. Table 6.+ Percentage of frames where other targets were located when edge extrac-
tion was utilized.

- - Target Tracked Other Targets

Target 1 | Target 2 | Target 3

R N YTV
PO TINAS 1

Sequence 1, Target 1 - 45% 58%
Target 2 4% - 0%
Target 3| 47% 31% -

Sequence 2, Target 1 - 18% 42%
Target 2 | - 0% - 0%

Target 3 2% 0% -

Table 7. Percentage of frames where other targets were located when no image
preprocessing was utilized.

Target Tracked Other Targets
Target 1 | Target 2 | Target 3
Sequence 1, Target 1 - 7% 92%
Target 2 5% - 58%
Target 3 0% 42% -
Sequence 2, Target 1 - 7% 87%
Target 2 0% - 2%
Target 3 2% 14% -

59

attempt to maintain track, but only identified those frames in which the location of
the other target was identified as a potential target in two consecutive frames. While
some of the best results were obtained with no image preprocessing, the option which

‘ ‘utlhzed scene a.veragmg with grey-scale restored had the best overall performance.

Wlule the _performance of this method was not perfect, the amount of additional _

processing required to accomplish it was minimal. Meanwhile, the potential benefits

from knowing the locations of other targets could be tremendous. The ability of a
system to identify those other targets, choose the highest priority target in its FOV,
and change track to the highest value target could be extremely beneficial.

4.6 Summary

This chapter has presented the results obtained through this research effort.
The ability to track a target in the presence of multiple targets utilizing correlation
plane postprocessing was demonstrated. Also, the ability of this algorithm to reduce
the trécking error by 63% and to eliminate the effects of correlator walk-off by
reducing"»ﬁna.l frame errors by 94% and maintaining final frame errors less than the
avef#ée error over the entire tracking sequence was shown. Finally, the ability to
'. éécdrately determine the locations of other potential targets in the sensor’s FOV
was addressed. For the overall best results, the techniques which utilized no image
preprocessing, an adaptive template with the full scene searched, and the correlation

plane postprocessing described in Section 3.6.2 were found to be the most effective.

Chapter V will present the conclusions reached during this research and will

make recommendations for potential future research efforts.

60

(Y

LD el

V. Conclusions

| Tlns chapter presents a brief summary of this research, provides conclusions
based on the results obtained, and recommends areas for future resea:ch eﬂ'orts

LR

5 I Research Summary

Thexr were four ma)or goals of thxs research 1) to track a target in the presence
of multxple, similar targets of interest; 2) to reduce the tracking error encountered
by Capt. Law (10) in the previous correlation based tracker research; 3) to reduce
the effects of correlator 'walk-off’ in the tracking algorithm; and 4) to identify the
locations of other objécts of interest while tracking a designated target.

The ﬁrst goa] was met through the use of a correlation plane postprocessing
techmque Based on the assumption that the target changed little from frame to

frame the template was autocorrelated and the 7x7 array of pixels surrounding the

o peak was extracted Since the template correlated with the target in the next frame

. was expected to have a correlation peak of roughly the same height and shape, the

| template-scene correlation plane was then searched to find the peak which had the

smallest distance in weighted 49-dimensional space from the template autocorrelation

peak. Thts allowed the tracking algorithm to identify the proper peak, instead of
just the largest peak, in the correlation plane which represented the location of the
designated target. This postprocessing technique, in conjunction with an adaptive
template which set its size to match the actual size of the target (see Section 3.5),
was also used to reduce tracking error and counter the effects of correlator “walk-off.”
Overall, average tracking error was reduced by an average of 63% and final frame
errors were reduced by an average of 94%. Finally, an algorithm which utilized the
information generated by the correlation plane postprocessing method was utilized

to identify the locations of other potential targets in the scene.

61

Cq

£ay

RSN

T
B

31

»

rn

5 2 Research Concluswns

Thrs research remforced Capt. Law’s (10) major conclusion that an a.daptlve

correlatxon based tracking system can be utilized to track 'real-world’ IR imaged

ta.rgets as long as the following criteria was met. The criteria is that the time -

dxﬁ'erence between two frames was small enough that no significant change in target _;"

oTIN O

3

sxze or onentatxon occurred When this criterion was met, the correlation based

trackmg system was able to track a designated target.

The presence of multiple targets in a sensor's FOV presented a unique problem
to a correlation based tracking system which identified the target based on the largest
peak in the correlation plane. Eventually, any such tracking system, whether corre-
lation based or a simple hot-spot tracker, would drift to the brightest target in the
sensor’s FOV. However, correlation plane postprocessing offered a means of removing
this shortfall. By utilizing the 7x7 array of pixels from the template autocorrelation
te ﬂnd the minimum weighted distance of every peak in the template-scene correla-

'tion, the best match-to the size and shape of the template autocorrelation peak in

the template-scene correlation plane can be found. Using the location of the best

"matched .pea.k as the designated targets location proved to be an effective measure

in maintaining track on the designated target.

The combination of correlation plane postprocessing and an adaptive template
algorithm proved effective in reducing the average tracking error. This research
significantly reduced the tracking errors encountered by Capt. Law (10). At the same
time, where Capt. Law, through testing different image preprocessing techniques
and using the largest peak in the correlation plane as the target location, found it
necessary to preprocess the input images in order to keep tracking error low, this

research found that the combination of correlation plane postprocessing, the use of

the template autocorrelation peak size and shape to find the best matched peak in -

the template-scene correlation plane, and an adaptive template worked best when

62

no image preprocessing was utilized. This represeﬂted a decrease in the overall

~ processing time for each frame, and was therefore considered to be very desirable.

"7 While feducing the average tracking error, the combination of correlation plane

CTeS SN SR

postprocessmg and an adaptxve template algorithm also proved effective in combating
A Lt]u:ueﬁ'ect.s of correlator walk-oﬁ' Although correlator walk-off is a random error, it
Lxmpacted Capt Law’s research (10) through an increase in total error as the sensor
platform closed in on the designator target. This led to large tracking errors in
the final frames; errors much larger than the average tracking error of the system.
Howevér, this research yielded very small tracking errors in the final frames; errors
which were smaller than the average tracking error of the system. This demonstrated

that the new algorithms were able to compensate for correlator walk-off.

Finally, this research demonstrated that while utilizing correlation plane post-
processing to accurately track a target in the presence of multiple targets, that the
information generated can also be used to determine the locations of other targets
.of interest within the sensor’s FOV. While the algorithm to accomplish this was not
.perfect, it sometimes, an average between 20% and 58% of the time and sometimes
éreater than 75% of the time, was effective as a means of potential target location

identification.

63

Appendix A. Adaptive Tracker Program Ezecution

In his thesis (10), Capt. Law described the operation of the two C language

programs in detail. This section provides a brief overview of the programs operation, —

and discusses the selection of new options implemented during this research effort. =

To run the C language programs, the SUN compufers must be operating the

OpenWindows environment, and two separate command tools must be opened. The
first of the two programs to be executed must be ’trac_menu’ (see Appendix x).
Once this program is running, 'trac_prgm’ must be executed in the other command
tool. The second program then asks the user whether or not images are to be
displayed on the monitor. The operator who selects 'no’, then has the ability to
temporarily interrupt the program later when it is running and place it in the systems
background to complete execution. This allows other users to operate the terminal

while the programs are running.

Two other changes were made in the operation of the programs. First was
the addition of the edge extractor option. After selecting an image preprocessing
method, the operator was given the opportunity to select edge extraction also. The
edge extraction would always occur after the inmitial preprocessing of the image.
The second change in the programs was the addition of the two new template and
search scene size options as described earlier in this chapter. It should be noted that
the small, medium, large, and adaptive template with small scene options all base
tracking on the highest peak in the correlation plane. Only the adaptive template
with full scene option implements the correlation peak analysis algorithm and the

tracking of other potential targets algorithm.

64

Appendix B. C Language Computer ngrdms

ooy

““*B.1 TRAC.MENU.C

e
A lawe

te V0 e -

7 /
/% TRAC_MENU.C s/
/s . o/
/e AIR FORCE INSTITUTE OF TECENOLOGY o/
/¢ A PROCESS TD ENABLE COMNUNICATION BETWEEN USER AND PROGRAN o/

e by Capt Paul D. Law o/
/e October 7, 1991 s/
s s/
/e modified by o/
/e Capt Dennis A Montera s/
I . 1992 ./
/e s/
/e s/

/* This is tbe first of a pair of programs which must be ran »/
/* in unisen ia order tec implement the adaptive corrslation o/
/* trTacking algorithm. It comfigures the program’'s required e/
/¢ 2iles and variables for initial operation and provides the ¢/
/¢ mepus and prompts which enadble tbe user to communication ¢/
/* and control the overall adaptive correlation process. o/
/ vos /

#include <stdio.b>
#include <stdlid.b>

nain()
R ¢
' FILE etpl, ofp2;
int character, i, z_value, y_valus, delay, step;
double x_coord, y.coord;
char string[10]), temp1[6), temp2[5], opt » ’n’, choics;
char temp, state, response, on ® ’1’, off = '0', makedir[64];
chbar clean.up(128], EOS, it, size, Dinary, edger = ’n°’;
float factor;

/* ./
/% Create directory under tmp. ¢/
/e /
strcpy(makedir, “mkdir /tap/trac”);
systea(makedir);

/e o/
/% Ensure initial program environment is set correctly. s/
/° ./
i7((2p1 = fopen("crosshair_data™, “r"))==NULL)
{

printf("File crosshair_data not found!\n");

exit(1);
}
fclose(fpl);

12((fp1 = fopen("blank_320x499", "r"))==NULL)
{ :
printf(“File blank_320x499 not found!\n");
exit(1);

65

¥

fclose(2pl);

12((2p2 = topen("/tmp/trac/starti flag", "v"))==NULL)
{

print? ("Exrror opening /eap/trac/startl_tlagi\n®);
exit(1);

}
tputc(oft, 2p2);
. 2close(2p2);

42((2p1 » fopen("/tmp/trac/start2_flag", “v*"))seNULL)
{
print? ("Exror opening /tmp/trac/start2_flagi\a");
exit(1);
}
fputc(of?, fp1);
tclose(fpl);

12((2p2 = fopen("/tmp/trac/startd_flag", "w"))esNULL)
{

printf ("Error opening /tmp/trac/start3_flag!\n");
exit(1); ’

}

tputc(oft, 2p2);

fclone(2p2);

12((2p1 = fopen("/tmp/trac/E0S_flag", "v"))==NULL) B
{

print? ("Exrror opening /tmp/trac/E0S_2lag!\n");
axit(1);

}

tputc(oft, £p1);

fclose(2pl);

42((2p2 = fopen("/tmp/trac/option_flag", "v"))==NULL)
{

print?("Exror opening /tmp/trac/opticn_flag!\n");
exit(1);

)

fputc(of?, £p2);

fclose(2p2);

12((2ps » fopen("/tmp/trac/state_flag", “w"))==NULL)
{

print? ("Exror opening /tap/trac/state_flag!\n");
exit(1);

}

fputc(of?, 2p1);

fclose(2pl);

12((2p2 = fopen("/tmp/trac/state_info", "v"))=sNULL)
{
printf ("Error opening /tmp/trac/state_ info!\n"};
exit(1);
}
tpute(’s’, 1p2);
fclose(fp2);

12((2p1 = fopan("/tmp/trac/coords_flag_1", "v"))=sNULL}
{
printf ("Error opening /tmp/trac/coords_flag_1!\n");
exit(1);

)
fputc(of?, tp1);

66

‘e

Rt

felose(fpl);

12((2p2 » fopen(™/tap/trac/coords_flag 2", “v"))=eNULL)

print? ("Lrror opeaing /tmp/trac/coords_flag.21\n");
exit(1);

}

gputc(ot?, 2p2);
2close(2p2);

strepy(clean up, “rm -2 /tmp/trac/*®);

o/

/

/* Prompt user to execute the program 'trac_prgm. */

e/

I

print2(*Xc\a", '\007*);

puts(”/
puts(*/e»
puts(®/e
puts(®/s
puts(”/e
puta(”/e
pute(®/e
puta(®/e
puts(”/e

This adaptive correlatiom tracking algoritha
requires the concurrant execution of a second
prograa. To ensure proper synchronization and
achieve optimal systea performance, this add-
itional program must de executed in this sys-
tea's foreground mode. Open another command

windov (Command Tool) and execute the prograa
‘trac_prgm’ in directory .../plam/research.

./");
o/");
/%)
af");
/");
*/%);
/")
s/");
/")

puts(®/

do
{

12((2p1 = fopen("/tmp/trac/starti_flag"”, “r"))e=NULL)
{

printf ("Ervor opening /tmp/trac/starti_flag!\n");
exit(1); :

}

./

/

/e
temp =

/* Check a file repeatedly till content equals 1. »/
/

fgetc(fpl);

while(temp!=on)

{

fclose(2pl);

i1((tp1

{

printf (“Exror opening /tap/trac/startl_flag!\z");

exit(1);

}
temp
}

= fgetc(fpl);

fclose(2pl);

12((2p2 = topen("/tmp/trac/starti_flag”, “vw"))==NULL)

{

printf("Error opening /tmp/trac/starti_flag!\n");
exit(1);

}

tputc(of?, £p2);
2close(2p2);

/e

/* Display targeting prompt and read keyboard input.

printf ("Xc\n", '\007*);
printf("/e-eee- .- cccmcocem———— "y,
printf("-ccccccca e/\n");

o/");

= fopen("/twp/trac/starti_flag", "r"))s=NULL)

»/
o/

printf("/* This prograa is currestly eperating in");
printe (" the o/\n");
printf(*/s tree-run mode (cnly the image field-of*);
printf("-views o/\a");
print?("/¢ are being showned with no target being");
printe (" track- ¢/\n");
print2("/e od). The available options are: 't’ to");
prints(" activ- o/\n");
priotf("/e ate the targeting mode, 's’' to skip (b");
printf(“y-pass) ¢/\zs");
printf("/e a portion of the image sequence, or ‘e%);
printf(®* to o/\n");

printf("/s exit from this progrsa entirely. ");
printe(” o/\n%);
printe(*/ "

printt ("eceececece/\n");
print?("\nEnter desired option: ");
gets(string);
state = string(0];
state = tolover(state);
while(state!='e’ &k state!=’'t’ k& state!e’s’)
{
printt("Yc\n", '\007');
puts("Target or Exit?);
printf(“Enter first letter: *);
gots(string);
state = ptring(0]);
state = tolover(state);

}

if(state=='g’)
{
printf(“Yc\z*, *\007’);
print? ("Number of images to be by-passed: ");

gots(string);

step = atoi(string);
}
/e o/
/% Pass selected option to ’trac_prgm’ and reset flag. ¢/
/e /

i2((tp1 = fopen("/tmp/trac/state_info", “w"))=syNULL)
{

printf("Error opening /tmp/trac/state_info!\n");
exit(1);

)

fprint? (2p1, "Xc\n", stats);

if(stateme’y’)

{
tprintf(2p1, “Xd\n", step);

}

fclose(2pl);

12((1p2 = topen("/tmp/trac/state_flag", "v"))==NULL)
{

print? ("Error opening /tap/trac/state_flag!\n");
exit(1);

}

tputc(on, p2);

fclose(2p2);

/tecrcvcccccnna -s/
/* Exit program if last image has been ¢/
/® processed or per user’'s request. ./
F L R ettt L DL L L L L LT ./

68

12((2p1 » fopen("/tap/trac/E0S_2lag", “r"))=ejULL)
{

print? ("Error opening /tmp/trac/E0S_flag!\n");
exit(1);

EDS = fgetc(2pl);
i2(serror(spl))
{ . .
print? ("Exror reading from /tap/trac/E0S_flag!\n");
exit(1);

}
if(statemw’y’)
while(E0S!=cn)
{
fclose(tpl);
12((fp1 » fopen("/tmp/trac/E0S_flag”, "r"))==NULL)
{
print?("Error opening /tup/trac/EDS_flag!\n");
exit(1);
}
EDS = tgetc(fpl);
}
fclose(tpl);
12(EOS==on)
{

system(clean_up);

printe(“Yc\n", *\007’);

printz(~/e b H
printf(Meevemccacs/\n");

print?("/* This program bas been terminated eithe”);
priot?("r in re- »/\n");

print2("/s sponse to the user's requast or becaus™);
printf("e the s/\a");

print?(*/» digitized images for this sequence has");
print2(” bees s/\e");

printf("/e exhausted. ");
printe (" e/\a");
printe (/e W H
printf("-=cevecmcs/\n");
exit(0);

3 .

if(statems’t?)

{

12((fp1 = fopen("/tmp/trac/state_flag", "r"))esNULL)
{

print?("Error opening /tmp/trac/state.flag!\n");

exit(1);
/ o/
/% Cbeck 2 file repeatedly till content equals 0. »/
/e ./
temp = fgetc(fpl);
while(templmos?)
{

fclose(2pl);

17((2p1 = fopan("/twp/trac/state_flag", "r"))w=¥ULL)
{
printf("Error opsning /tmp/trac/state_flag!\n");

exit(1);
}

69

temp = fgetc(fpl);
}
fclose(fpl);

printf("Ic\n®, *\0OT');
printe("/e ")
printe(t=wec=ce=c==e/\n");
print2("/e To select a target, align the cross-");
printf("bair of s/\n");
print2("/¢ the mouse on the target of interest.“);
printf (™ Observe o/\2");
printf("/e the corresponding x=~ and y- pizel co“);
printf(“ordinates »/\n");
printf(*/e shown on the lower portion of the di%);
printe("splay win- s/\n");
printf(“/e dow. Enter these coordinstes at the");
print2(” prompt */\n");

printf("/e belov. .
Prnt' (& ./\I") :

printe(®/ ",
printf(t-eceen ceeeme/\D");

/ ./
/* Retrieve user inputted target coordinates. s/
“ o/
do

{

print?("\nEnter the z- pizel coordinate: ");
i2(gets(templ)==NULL)
{

print?("Error reading in x-coordinate!\n");
sxit(1);

printf ("\nEnter the y- pizel coordinate: ");
if(gets(temp2)==NULL)
{

print? ("Error reading in y-coordinate!\n");
axit(1);

}

x_value = atoi(templ);

y.value » atoi(temp2);

/» o/
/* Comfirmation of inputted target coordinates. s/
/- o/

printf(*fc\n", *\007’);
print2("\nTarget coordinates are:\z");
printf("z = %4, ", x_value);

printf("y = X4 (Y/N)..... ", y.value);
gets(string);

response = string{0);

response = tolover(responss);
vhile(response!=’y’ &2 responsei=’n’)

prist?("Xe\n®, *\007');
print?("\nTarget coordinates are:\n"):
printf("x = %d, ", x_value);
printf(*y = Xd (Y/N)..... ", y.valuse);
gots(string);
response = string(0];
response = tolower(response);
}
}wbile(response!=’y’);

print? ("Xec\n", *\007’);

printt(*/e ";
pristf("e=e-c—===c=s/\n");
printf("/* The following image processing techn”);
printf(“iques can */\n");
print£("/s be applied to this adaptive correlat®);
printf(“ion track- ¢/\n");

printf("/s ing algoritha . ")

printe(” */\n");

printt("/* ");

priste(® s/\n");

print?(*/e¢ A...Dinarization normalized to 265%); e
printe(”. o/\a");

priste("/e ")

printe(” */\a");

priotf("/¢ B...Pinarized with image gray-scal®); : .
print2(™e added. o/\n"™);

printe("/e ")

printe (" o/\n");

printf("/e C...Truthed target regions. (From “);

printf("8-1Kka) »/\n");

printf(”/e ")

printe (" */\n");

print2("/e D...Truthed template w/ unmodified™);

printf(” scens. o/\n");

printt("/e (Valid 2rom 8-1Km) ")
printz(" s/\e");
printf("/e ");
printf (" - s/\n");
printf("/e E...Blended images. (Bimarized) *);
priote (" */\n");
printf("/e ");
printe (" */\p");
printf("/e F...Blended images. (Gray-scaled a");
printe ("dded) s/\n");
printe("/e ")
printe(® e/\n");

printf("/s G...lmage correlation without emha");
print?("ncements. ¢/\n");
printf("/s "y,
printf(” */\n");
printf("/e B...Optical adaptive tracking simu");
print?("lation. =/\n");

printe("/e ")
printe(” s/\a");

prinste("/ ");
priotf("eeecoccocae */\2");

printf("\nEnter desired option: ");

geta(string);

it = stringl0]);
it = tolowsr(it);
vhile(itie’a’ &2 1t!=’b’ 22 it!=’'c’ ki itis=’'d’ X2 jtie’'e’ 2k it!='?’ 22 it!wig? 2 itiw’h’)
{
printf("Xc\n", *\007');
print?("Enter option A, B, C, D, E, F, G, or K... ");
gets(string);
it = stringl0);
it = tolower(it);
)

$f(dtwey’ || dtem’d! || ftwmiq! [| ites='s?)
{
printf("Xe\n", '\007’);
print?(“Binarize via: A) Line-by-lins average\n");
printf (" B) Scene sverage\n");
priate(” or C) Cline Biparizatjon?... ");

71

gots(string);
binary « stringl0];
dinary ® tolower(binary);
while(binary!='sa’ 8k binary!e’d’ &k binaryiw’c’)
{
printf("Xc\n", *\007');
printf("Euter option 4, B, or C... *);
gots(string);
binary » stringl0];
binary = tolover(birary);
}
i2(binarye=’a’) bimary * ’'g2’; . .

print2("Yc\n", '\007');

printf("/e ” ")
printf("-rvecccccccs/\n");

printf("/e The bdinarization threshold for this *);
print2("progran is ¢/\n");

printf(*/s computed as ’‘threshold¢{factor x thr");
printf("eshold)’. e/\n");

printf(*/¢ To vary the threshold, scter a value");
printf(" for the s/\n");

print2("/e variable ’factor’ (value must be bet");
printt("ween -1 */\n");

printf("/+ and 1). N
printe (" */\n");
printe("/e "y,

printf ("==cweeecccce/\p");
printf("Enter a value between 0 and 3: ... ");
gets(string);
factor = atof(string);
}

printf("le\n", *\007’);

printf("Use edge extractor (y or n)? \n");
gets(string);

edger = stringl0];

edger = tolower(edger);

printf("Yc\n”, ’\007’);

printe(”/ "y,
printe ("e=cceemc-e=e/\p");

printf("/¢ The template and scens sizes can als");
printf("o be chan- #/\n");

printf(*/e ged. The availadble sizes are: "y
print2(” s/\n");
print2(”/e ");
printe(” */\n");
printf("/s L...Template(64x40) and Scene(192");
printf("x120) */\s");
printe("/s ");
printe (" »/\2");
printf("/e¢ K...Template(42x28) and Scene(116");
print?("x72) */\n");
printe(®/e ")
printe(® */\n");
print2(®/e S...Template(30x19) and Scene(60x");
printz("38) s/\n");
printe("/e ")
printe(” s/\n");
printe("/s A...Adaptive Template and Small S”);
printf(“cene s/\n");
priate(n/e ")
printe(® s/\n");
72

printe("/e F...Adaptive Template and Full 8¢");

printt(“ene */\n");

priate("/e ");
printt(® o/\n");

printe(~/e ");
printf (#=—-ee=coem=s/\n");

printf(“\nEnter desired option: *);

gots(string);

size = stringl(0);
size ®» tolower(sise);

while(size!=’l’ &% size!"’'m’' &Rk simet=’s' R& sizeio’a’ &k sizei=’g?)

{
print?(“Xe\n", °\007");
printf(“Enter option L, X, 8, 4, or F..... ");
geto(string);
size = stringl[0);
size = tolower(size);
}

12((2p2 = fopen("/tmp/trac/coords_info_1", "w"))esNULL)
{
printf{“Error opening /tmp/trac/coords_info_11\n");
exit(1);

tprint?(2p2, "Yd\nXd\nXc\n*, x_value, y_value, it);
2print?(2p2, "%f\nkc\n", factor, size);
tprint?(2p2, “%c\nlc\n", binary, edger);
2close(2p2);

i2((2p1 = fopen("/twp/trac/coords_flag 1", “w"))=sNULL)
{

print? ("Exror opening /tmp/trac/coords_flag_1!\z2");
exit(1); .

}

tputc(on, 2p1);

fclose(fpl);

i2((2p2 » fopen("/tmp/trac/coords flag 2", “r"))=ayulLl)
{
print?("Error opening /tmp/trac/coords_flag_2!'\n");
exit(1);

}

/ /
/s Check a £ile repeatedly till contant equals 1. =/
/* /

temp = fgetc(fp2);
while(temp!=on)
{
fclose(Lp2) ;
12((2p1 = fopen("/tmp/trac/coords_flag_2", “r"))=sNULL)
{
print?("Error opening /tmp/trac/coords_flag.2!\n");
exit(1);
}
temp = fgetc(2p2);

fclose(2p2);

12((2p1 » fopan("/tmp/trac/coords_flag_2", "w"))=sNULL)
{
printf(“Error opening /tmp/trac/coords_flag_ 2!\c");
exit(1);
}
tputc(of?, fpi1);

fclose(fpl);

/» ./
/e Retrieve range, target number, and true Center-of- s/
/* target coordinates from the program 'trac_prgm’. s/
/ .
42((2p2 » topen("/tmp/trac/coords_info 2", "r"))==NULL)
{

puts("Error reading from /tap/trac/coorda_into 21");

exit(1);
¥
temp = tgetc(2p2);
12 (templecte)
{

tgets(string, 128, 2p2);

fgets(string, 128, 1p2);

x.coord = atof(string);

fgets(string, 128, 2p2);

y.coord » atof(string);

fgets(string, 128, £p2);

character » atoi(string);

fclose(2p2);

/ /
/* Give the user the optic. to track o/
/% on the true center-of-target. ./
/ oJ4

print2(“ic\n", '\007’);

printf(“sessssesess TARGET RANGE: Xd", character);
print!(“ meters eesssssssss\n");

printf ("Inputted target coordinates”);

printf(" were: x = {d, y » %d\n", z_value, y_value);
printf(*True center-of-target is at: “);

printf("x » 46,17, y = ¥6.1f\n\n", x_coord, y_coord);
printf ("Track on center-of-target instead?");
prine(™ (Y/W)..... ");

gets(string);

response = string(0);

response s tolover(responss);

while(response!='y’ &k response!=’n’)

{

print2("¥%c\n", *\007*);

print? ("\nTarget coordinates are:\n");
printt(“x = %d, ", x_value);

print2("y = Xd (Y/N)..... ", y.value);
gets(string);

Tesponse = string{0];

response = tolover(responss);

>

/ ./
/* Pass user’s response to progras ‘trac_prga’. ¢/
/* o/

12((2p2 = fopen("/tmp/trac/coords_info_1", “w"))esNULL)
{

print2("Error opening /tmp/trac/coords_info_1!\n");
exit(1);

}

fprintf(2p2, "Xc\n", response);

fclose(2p2);

i2((2p1 » fopen("/tmp/trac/coords_flag.1", "v"))e=sNULL)
{
print?("Error opening /tmp/trac/coords_flag_1!\n");
exit(1);

oL?

}
tputc(on, fp1);
fclose(2pl);

do

12((2p2 » fopen("/tap/trac/start2_flag”, “r"))==NULL)
{
print?("Error opening /tmp/trac/start2_flagi\n");
exit(1);
)}

Ie /
/¢ Check a file repeatedly till content equals 1, »/
/e ./
temp = fgetc(fp2);
while(tempi=on)
{
f2close(p2);
i2((2p2 = fopen("/tap/trac/start2_flag", "r"))weNULL)
{

print?("Exrror opening /tmp/trac/start2_flag!\n");
exit(1); :

>

temp = 2getc(fp2);

fclose(2p2);

12((2p1 = fopan(*/tmp/trac/start2_flag"”, “w"))==NULL)
{
print? ("Exror opening /tmp/trac/start2_flag!\n");
exit(1); .
)
fputc{oft, fp1);
fclose(2pl);

printf("Yc\n", *\007’);
printf("/ W H

printf("/e This program is currantly tracking®);
print? (" the chosen */\n");
printf("/s target-of-interest using adaptive ");
printf("correlation. */\n");

print2(”/e Available options ars: ");
prines(” s/\n");
printf("/e ");
prisee (" */\n");

printf("/+ W...Vary the templats and scene ¥");
printf(“indov sizes. s/\n");

print2("/s - *);
printe(” */\s");
print2("/» B...Change the binarization techn");
printf("ique. */\n");
printe("/e ");
prints(" »/\n");
print2("/e T...Vary the binarization thresho");
printf("1d. »/\n");
prints("/e ")
printe(* */\a");
printf("/+ X...Select a different target-of-");
printf("interest. s/\o");
printf("/e ")
printe (" */\n");

printf("/e E...Exit from this progras entire");

’

SRR |

l‘

printe("ly. s/\n");

prtnt!("l' .)3 a R N)
printt(® »/\n");

prinst(®/ ")

printf(tec-evmencmcecs/\3");
printt("\nEnter desired option: ");
gots(string);

opt = stringl0);

opt = tolower(opt);

/e /
/e Check repestedly till & valid option was chosen. ¢/
Ie /

wvhile(opti='e’ Ak opti='vw’ &R opti=’'n’ &k opti=’'t’ &k opti=’b*)
{ .
printe(*lec\n", ?\007'); . . B
puts("Vindow, Binary, Threshold, New, or Exit?");
printf("Enter the first lester of choice: ");
gots(string);

opt = stringl0];

opt = tolower(opt);

)

choice = opt;

if(opte='v')
{
printf(*Xc\n", ’\007’);
puts(”Small, Medium, Large, Adapt/Small, or Full/Adapt.");
print? ("Enter the first letter of your choice: ");
gets(string);
choice = stringl0];
choice = tolower(choice);
while(choice!='s?® 22 choice!='n’ 22 choice!®’)’ &k choiceiw’a’ &k choicels’s’)
{
priste("¥e\n", *\007?);
printf("Enter option S, N, L, A, oz F... ");
gets(string);
choice = stringl0]};
choice = tolower(choice); -
3}
opt = rot;
}

it (opte=’t’)
{
primtf("Xc\n”, ’\007’);
printf("Plesse enter a value betwesn 0 and 1... ");
gets(string);
factor * atof(string);
opt = ‘o’;

}

if(optee’p’)
{
printf("¥c\a", '\007*);
print?("A) Line-by-line, B) Scens, or C) Cline?... ™);
gots(string);
choice = string(0);
choice = tolover(choics);
wvhile(choice!='g’ 82 choice!=’b’ 82 choice!=m’c?)
{
printe("Lc\p", *\007’);
printt("Enter option A, B, or C... ");
gets(atring);
choice = string(0];

76

choice = tolower(choice);
)
it(choicem=’y’) choice » 'z’;
opt * ‘o’;

12((2p2 = topen("/tmp/trac/option_info", "v"))eeNULL)
{
print? ("Exror cpening /tmp/trac/option_intoi\n");
exit(1);
)}
tprintt(fp2, "Yc\n", cboice);
if(choicems’t?)
{
tprintf(fp2, "If\n", factor);

2close(2p2);
12((2p1 » fopen("/tap/trac/option_flag", "w"))=sNULL)
{

printf(“Exror opening /tmp/trac/option_flag!\n");
exit(1);

}

tputc(on, 2p1);

fclose(2pl);

/ */
/% Exit program if last image has been ¢/
/* processed or per user’s request. o/
I /

12((2p1 » fopen(*/tmp/trac/EDS_flag", “r"))==WULL)
{ - . .

print?("Error opening /tmp/trac/E0S._flag!\n");
exit(1);
)
EDS = tgetc(fpl);
if(2error(tp1))
{
print?("Error reading from /tmp/trac/EDS_flag!\n");
oxit(1);
}
if(optae’e’)
{
while(EOS!=on)
{
fclose(fp1);
12((2p1 = fopen("/tmp/trac/E0S_flag", "r"))ssNULL)
{

printf ("Error opening /tmp/trac/E0S_flag!\n");
exit(1);
}
E0S = fgetc(fpl);
)
b
fclose(2pi);

12(EQSe=on)
{
system(clean up);
printf("Xc\n", *\007');
printt (/e o= ")
prioy("eecceccee */\n");
print?("/e This program has bean terminated eithe");
printf("r ip re- */\p");
priotf("/e sponse to the user’s request or becaus");

~1
~

pristf(®e the o/\n");
print?(*/e digitized images for this sequence has*);
print2(® been o/\n");
printf("/e¢ exhausted. ")
printe(” o/\n%);
prints("/e ")
priatt(teerecrecas/\n");
exit(0);
}
Yuhile(optee’o’);
}
Juhile{optee’n’);
}

B.2 TRAC_PRGM.C

/ /
/% TRAC_PRGK.C ./
/e o/
/e AIR FORCE INSTITUTE OF TECHNOLOGY s/
/¢ TRACKS TARGET USING THE TECENIQUE OF ADAFTIVE CORRELATION =/
/e by Capt Paul D. Lav o/
/e October 7, 1991 o/
/e o/
/e modified by o/
/e Capt Dennis A. Nontera o/
/e September 1, 1992 s/
/e o/

/® This is the second of a pair of programs which must be ran ¢/
/* in unison in order to implemant the adaptive correlatiocn @/
/% tracking algoritham. It performs the required computations, */
/* manages files, and utilizes KHOROS image processing rout- o/
/* ines to manjuplate the sequential FLIR images. In general, ¢/
/% it is responsible for the overall control of the adaptive s/
/* correslation tracking process. s/

/oesnse [/

#include <stdio.b>
#include <stdlid.h>
#include <sys/stat.b>
$include <math.h>
¢include <time.b>

void line_bdbin();

void main(argec, argv)

int argc;
char sargv(};
{
/e ./
/* Define and initialize program variables. »/
/e /
FILE etpi, efp2, »2p3, ofp4, otpb, o2p6, ofp7, +2p8;

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

r2v_cs[128], pad3_2x5[128), delay[128], byte_ca[128);
display_tov{128), pad4xz8_cs[128], renamne0}128)];

padaxe _ps[128], extr_s1[256), extr. t1[25%6), 2re_s1{128);
22e_t1(128), display.s1(128), r2v_ps{128), byte_si[128];
pad256_s1[128), pad266_t1[128], display_t1[128);
conjug_t1[128), inv_22¢[128], byte_f1ip[128], termi(15);
sxtr_sub[266), byte_sub[128], byte_fov{128], state_f1ag;
mode = ’f’', state = 'r’, opt = ’'a’, byte_t1(128);
add_cross[128], files[200)[128), b_extru2(128], set;
ps.value[12], k_displ_fov[128), k_displ _ti1[128], temp;
q.214p128[128), string(128], size, X _displ_s1[128];
search([128), mthd, intru_t1(128), r2v_old[128), corr_min(128];
mean_cs[128], mean_ps[128), copy._t1[128], copy.s1[128];
stat_pk{250]), opt_flag, wulti{128]), on » *31’, off = '0’;
tilaname(128), tru_cntr[200)(128), run_num[15), Cstat[250);
cs_stat[260), d.01(128), ti_4stat[128), si_4astat(128]);
extru_s1[128], extru._ti[128), iotru_si[128), a_ins[128);
ps_stat[250), b_ins(128), gti_4stat{128], gsi1_4stat{128);
padi28_s1{128), pad128_t1{128], q.21ip64(128);
bin_s1[128], din_t1([128], si_x_bin(128), ti_xz_bin(128);
pad_4displ[128), blend_t1[128], blend_s1(128);
bp?_s1(128), hpt t1[128], pad64_+1{128), pad64_s1{128);
stat_t1dlend[250), stat_siblend[250), blend_x_t1{128]);

~Q

char blend_x._91[128), caplx_t1(128), cmplx_s1[128], term2[1E);
char cti_4ssat(328), cei_dstat(128), a_paddx8(128]), renaned([128);
char corr.var[128), corr_stdev(128), corr_mean(128), corr max[128);
char §_214p32[128], t1_2veal(128], si1_2real[138), a_pad3(1206]);
char b_paddx8(128), c_padex8(128], a_exrtru2(128), stro(12e);
char clr_scr{128], summary[128]), str1{1268), str2(128);

char d_paddz8[128), a_2asci[128), a_2asc2[128], a 2asc3(128];
char b_2esci[128], b_2esc2[128], b_2asc3[128], a. 2byte1(138);
char b_2byte1(128), a_extrui{128], b_ertrui{128], a_padi1[126];
char b_padi[128), a_extr1[128], b_extri[128), a_2vire[128);
char b_2viff[128), a_extr2[128), c_padi_4x8[128], b_pad3[128);
char d_pad)_4x8[128), b_extr2[128], targ.7i1e{128]), rename3[128);
char Cmean(15], Cvar(15]), Cmax[15], Cmin[16], Cstdev[1E], careal[128];
char a_multi[128), b_sulti[128]), copy.cs[128), copy_ps[128);
char rbin_t1[128], rbin_s1(128], a_2byte2(128], b_2byte2(328);
char bin_state » 'b', cs_paddx8[128]), ps_padax8[128), end(E);
char s_4mean[128], t_4mean(128), stat_cs[260), stat_ps[250);
char hi_ps[128), hi_co[128], name1[128), dyni_s1(128);

char dyni_t1[128), and_s1[128), and_t1[128), dyn2_s1([128);

char dyn2_t1[128), cpy.cs[128), name2[128], stat_st1(250);

char rename2[128), plotname{3128), stat_ss1[250], rename1(128);
char displ_file[128), saveing{128), term3({50), padt1[128);

char corrtt{300), corrts[300], display = 'g’;

char extr_cross(128]), pad_cross[128), cut_cross[128), tempo[128);
char padE12_s1[128], padB12_t1[128), 22t _t2(128);

char extr_win[128), edger = ’n’;

int cycle = O, pass = 0, count = 0, run » O, character, r;

int x_value, y_valus, X_term, y_term, targ.num, beight, width;
int integl, integ2, index = 0, curr.x, curr.y, curr h, s;

int curr.w, old_x_templ, old_y_teampl, old_x_scens}, step;

int old_y_scensi, x_pumb, y_numb, max, min, tt_max, tt_min;

int st_max, st_min, tb_max, tb_min, total, sum, valus;

int swap, x_coord, y_coord, i, J, k, 1, =, n, X_peak, y_peak;
int pad_size = 128, offset = 25, length, fr_info, tr_info;

int x_scenel, y_scenel, x_templatel, y.templatel, limit;

int y_templatei_size, x_templatel_size, y.scenel_size, digit3;
int x_scenel_size, y_display._size = 200, x_display_size » 310;
int x_display, y_display, times = 0, jobl, job2, jobld = O;

int high_o_ps, high_o_cs, number, condl, cond2, digizl, digit2;
int xy[498) [320), pointer, xcen, ycen, €xX, €Yy, tix, tyy, fact;
int al, a2, b1, b2, ci, c2, d1, d2, xx, yY:

int tapz, tmpy, cownt, xpat, ypnt, xlan, ylen, xedge, yedge:

int xtar(20]), ytar(20], boldx{20]), holdy[20), permz, permy;
float blend_mean, si_mean, ti_mean, factor = 0.15;

float cortemp[7][7], cordata[499)(320), tempdata;

float holder2, norml, norm2, noral, sOrmt, DOYWMC;

double result, distance, mean, numbl, numb2, angle;

double pie = 3.1415926535680793;

double t_value, power, npower, tt_npower, tt_povar;

double st_npover, st_power, tb_pover, tb_npover, mean_o_ps;
doudble mean_o_cs, t_npr, t_pr, s_npr, B_pr, pr, npr, error;
double xf_tera, yf_term, xf_coord, yf_coord, f_temp, xf_peak;
double y?_peak, fvaluel, fvalueZ, x?_numb, yf_numb;

double x?f_catr, yf_catr, outl, out2, outl, out4d, out5, outf;
double out7, outl, temp._np, temp_p, SCOL_Dp, BCen_p, factor2;
double corrvar, corrmean, corrstdev, corrmax, corrmin, check;
double percent, holder, dist, magerr{20];

doudble normali, normal2, norsald, normalc, normalte;

/o= - P L e L T e T o/
/¢ Checks for base filaname ©f the image sequence ¢/
/* and ensure ‘trac_menu’ has beez ezecuted. ./
[eeecrrccocan L L L T e/

12((fp1 » fopen("/tmp/trac/starti_flag", "r"))=eNULL)
{

80

&)

print? ("Ye\n", *\0OOT*);

puts(”/e /°);
puta(™/e This is the second of two programs which ¢/%);
puts("/+ must be sxecuted in uniscn in order to im- ¢/%};
puts(*/¢ plemant the adaptive correlation tracking o/%);
puts(*/s algoritha. To easure correct synchronizst- /%);
puts(“/s ion, the first progras 'trac.menu’ must be */");
puts(”/e yunning in the system's foreground mode o/");
puts(”/e prior to the execution of this progras. /%),
puts("/e Opes another command vindos (Command Tool) */*);
puts("/s and ezecute ‘trac_menu’ located in the o/");
puts(®/e .../plaw/research directory before attemp- ®/%);
puts("/s ting to re-execute this progras. o/");
puts(”/e o/");
printe(*\a");
exit(1);

)

12 (arge<2)

{
prints("Xc\n®, '\007');
puts("/e ");
puts(”/s Incorrect cowmand syntax or missing base ¢/");
puts(”/e filename! The correct form of the command s/");
puts(®/s is COMMAND BASENAMEe .EXT where basename is */");
pute("/e the portion of the filepame which is com- o/%);
puts(“/= mon to a group of image files. For example s/");
puts("/s the base filename for a sequence of image °*/“);
puts("/e £iles with names Ob3010.piz to ObI0BO.pix /");
puts("/+ i C-3¢.pix. Re-execute this program with ¢/");
puts("/* the correct syntax and base filename. /%);
puts(”/e o/");

printf(“\n");

oxit(1); .
}
fclose(2pl);

/* *
/* Determine if displays to screen - »/
/* must be ’'n0’ to run in dbackground ¢/
/» o/
wvhile(display!®’y' &2 display !=’n’)

{

priatf(“Yc\n", *\007*);
puts("Displays on screea (Y or I)?");
gets(string);
display = string(0):
display = tolower(display);

}

for (xx = 0; zx <= 19; *+ xx) {
holdx[zx] = O;
boldy{xx]) = 0;
xtar(xx]} = O;
ytar{za) = O;

Joemmnaa cmmwef
/* Determine pame of file containing */
/® true target location information. e/
/- - ./
strcpy(string. argv(il);

lengtk = strlen(string);

for(i=0; j<(length -~ 10); i+e)

{

81

filenane (i) = string(i);
)}
for(xe0; k<(length = 13); ke+)
{

pamel[x] = stringlk);

}

namei[x] = *\0*;
tor(y=0; j<3; jo)
<

pame2[j) = stringlx + §);
}
name2(j) = *\0’;
for(y=0; J<3; j*+) run_num(j) = filename[i - 3 ¢ 351;
run_num[§) = '\0*; . A L ”
strcat(filename, "_tru_cantr®); ' - ’
11((2p2 = fopen(filename, "r"))==NULL)
{

printf (“Error reading from Ys!\n", filename);

oxit(1);
}
2close(2p2);
/e o/
/* Determine target range from image filenaws. */
/ .

for(i=0; i<(arge ~ 1); iee¢)
{
strcpy(string, argvlarge - (4 + 1)]);
length = strlen(string);
for(j=0; j<5; j++) termi[j) = stringllength - 5 ¢ §];
tormi[j]) = *\0’;
fr_info = atoi(termi);

/ /
/* Search for matching range informaticn */
/+ in the image truth data fils. ./
/e o/

sprintf(search, "grep ’' 1d ' Is", fr_info, filename);
strcat(search, " > /tmp/trac/temp_txt");
system(search);

12((2p4 = fopen("/tmp/trac/temp_txt", “r"))==NULL)
{

print?("Exror reading /tmp/trac/temp_txt!\z");
exit(1);
}

/e o/
/* 12 tfound, store the target locations, ¢/
/* else stors the predetermined number 0. o/

/e ./
it(tgets(search, 128, tpd)==yULL)
{
strcpy(search, termi);
strcat(search, " 0.0, 0.0 ; 0,0 ; 0 ; O");
strcat(search, * 0.0, 0.0 ; 0,0 ; ©O0;: oO");
strcat(search, ” 0.0, 0.0 ; 0,0 ; ©0; O\z");
)
tor(y=0; j<128; jee)
{
2ilen[i](J] = stringl));
82

Q!

tru_catr[) [§) ® searchlj);

}

fclose(tpd);
}
/ /
/¢ Initialisze KHOROS sub-routine command strings. ¢/
/e »/

strcpy(rav_cs, “rav2vif? -{ /tap/trac/current_scene *);

streat(r2v_cs, "~o /tap/trac/scenei_vif? -1 0 =t byte -mt ’Local Machime'’ *);

streat(rav_cs, "-r 320 -c 499%);

strcpy(pad3_ 235, "vpad -1 /tmp/trac/scensi_vife *);
strcat(pads_2x5, "-o /tup/trac/scenei_pad_3.2xb -r 320 ");
strcat{pads _2z5, "~c 600 ~d 0 =¢ 0 ~J O =k O");

strcpy(delay, "vresize ~i /tmp/trac/scepei_pad_3.2x5 ");
strcat(delay, "-o /tmp/trac/scenel_resize b 1 ~v 1%);

strcpy(byte_fov, “vconvert =i /tmp/trac/scene!_resize “);
strcat(byte_fov, "~o /tmp/trac/FOV_displ -n 265 ");
strcat(byte_tov, "~t byte =b O%);

strcpy(display_fov, “putimage -i /tmp/trac/FOV_displ *);
strcat(display_tov, "-x 408 -y O -update .01R");

strcpy(r2v_ps, “raw2vif? -i /tap/trac/previous_scene “);

strcat(r2v_ps, "~
strcat(r2v_ps, "~

o /tmp/trac/templ_viff -1 O -t byte -mt ’Local Machine’ ");
r 320 -c 499");

strepy(r2v_old, "raw2viff -i /tmp/trac/old_scene *);

strcat(ra2v_old, *
strcat(r2v_old, *

strcpy(pad4ze_cs,
strcat(padax8_cs,
strcat(padax8_cs,

strepy (padex8_ps,
strcat(pad4xs_ps,
strcat(padexs_ps,

strepy(cs_paddx8s,
strcat(cs_pad4axs,
strcat(cs_paddx8,

strcpy(ps_pad4x8,
streat(ps_padaxs,
strcat(ps_pad4x8,

strepy(-..an ,
strcat(a_padaxs,
strcat(a_paddxs,

strcpy(b_padaxs,
strcat(b_padazs,
strcat(b_pad4xs,

strepy(c_pad4ss,
strcat(c_padaxs,
strcat(c_padass,

strcpy(d_paddxs,
strcat(d_pad4zs,
strcat(d_pad4xs,

-0 /tap/trac/old_vif? -1 O -t byte -mt ’Local Kachime’ *);
-r 320 -c 499");

“vpad -{ /tmp/trac/scensi_viff *);
"-o /tmp/trac/scenel_pad_4x8 -r 400 ");
“-c 800 -d 40 -¢ 150 ~j O -k O");

“vpad -1 /tmp/trac/tempi_vite? ");
"-o /tump/trac/tespi_pad_4x8 ~r 400 -c 800 ");
“-d 40 =e 150 =§ O -k 0");

“vpad ~i /tap/trac/scenel_4stat ");
"~0 /tmp/trac/pad_4x8_scenel -r 400 ");
"~c 800 ~d 40 ~e 150 -j O -x 0");

*vpad -1 /tmp/trac/templ_4stat ");
"~0 /tmp/trac/pad_4x8_tempi -r 400 -c 800 ");
"-d 40 ~e 150 -§ 0 -k 0");

“vpad -1 /tmp/trac/a_padi_vwis *);
“~0 /tap/trac/a_pad2_4x8 -r 400 *);
“=c 800 ~d 40 - 150 -5 0 -k O");

“vpad -1 /tmp/trac/b_padi_vwls “);
"~o /tmp/trac/v_pad2_ 418 -r 400 *);
“=c 800 -d 40 ~e 150 =j 0 -k 0");

“vpad -i /tmp/trac/a_byte_intemp ");
"-o /tmp/trac/c_padl_4x8 -r 400 ");
"~c 800 ~d 40 - 150 -j O -x 0”);

“vpad -1 /tmp/trac/b_byte_ipscene ");

"-o /tap/trac/d_padl_4x8 -r 400 ");
"ec 800 =d 40 -e 150 -§ O -k 07);

83

strepy(pad_4displ,
strcat (pad_4displ,
strcat(pad_4displ,

strcpy(display.ti,
streat(display.ti,

strepy(display.si,
strcat(display.si,

strcpy(padasg ti,
strcat(pad2bé _ti,
strcat(pad2B8_t1,

strcpy(padias _ti,
strcat(padia2s_ti,
streat(padias _ti,

strcpy(padssq_ti, "
strcat(padé4 _ti, *
strcat(padéa_ti, "

strcpy(pad2bé_si,
strcat(pad258_si,
strcat(pad2se s,

strepy(padi2s _si,
strcat(padias _si,
strcat(padi2s_si,

strepy(padé4_si, *
strcat(padéd_si, "
strcat(padéd_si, *

strepy(pad5i2_si,
strcat(padbi2_si,
streat(padsSi2_sl,

“vpad =i /emp/trac/scenel viff *);
“eo /tap/trac/pad_4x8_displ -r 400 -c 800
“ed 40 =0 150 ~J O =k 0");

“putimage -i /tmp/trac/Ti.disp *);
oy 931 -y 60 -update .0318");

nputimage =i /tmp/trac/sub_scensl ");
“ex 9§31 =y 200 -update .032%);

“vpad =i /tmp/trac/sud_tempi *);

¢

’):

"eg /tmp/trac/sub_templ_pad -r 256 =c 256 *);

"ed 108 -a 96 =§ O -k O");

“vpad -4 /tmp/trac/sub_tempi ");

“-p /tap/trac/sub_ tempi_pad -r 128 -c 128 *);

"=d 50 -0 43 -3 O -k O");

vpad =i /tmp/trac/sub_tempi ");
-0 /tmp/trac/sub_templ_pad -r 64 -c 64 “);
-4 22 ~e 17 - 0 -k O");

“vpad -{ /tmp/trac/sub_scenel *);
"-o /tmp/trac/sub_scene}_pad -r 266 ");
%ec 256 =d 68 -0 32 - O ~k O");

“vpad =i /tmp/trac/sub_scenel ");
"-0 /tmp/trac/sub_scenel_pad -r 128 ");
"eg 128 =d 28 ~¢ 6 ~J O -k 0");

vpad ~4 /tmp/trac/sub_scensl ");
-0 /tmp/trac/sub.scenei_pad ~r &4 ");
~c 64 =d 13 -e 2 -] O =k O");

“vpad -i /tmp/trac/sub_scenel “);
"-¢ /tmp/trac/sub_scenel_pad -r 512 ")
"ec 512 ~d 0 -0 0 =3 0 -k 0");

strepy(fet_t1,
strcat(2ft _t1,

strepy(£2t_t2,
strcat(f2t_t2,

strepy(22¢_si,
strcat(f2t_s1,

“ytft -1 /tmp/trac/sub_templ_pad ");
n-o1 /tmp/trac/sub_templ_fft -d 0");

ny2ft =11 /tmp/trac/sub_temp2_pad “);
"0l /tap/trac/sub_ temp2 22t -d 0");

“y22t =11 /tmp/trac/sub_scenei_pad *);
“=gl /tmp/trac/sub_scenel 22t =d O");

strcpy(conjug.tl, "vconj -i /tmp/trac/sub_tespl_f2t);
strcat(conjug_ti, "-o /tmp/trac/sub_tespi_coni");

strcpy(multi, "vaul -i1 /tmp/trac/sub_scanel _fft ");

strcat(multi, "

-12 /tmp/trac/sub_templ_conj ");

strcat(multi, "-o /tmp/trac/scenel_x_tempi™);

strcpy(corrts,
strcat{corrts,
strcat{corrts,
strcat(corrts,
strcat(corrts,
strcat(corrts,
strcat(corrts,
strcat(corrts,
strcat(corres,
strcat(corrts,

"wmul -i1 /tmp/trac/sub_scenel_ fft “);
#-42 /tmp/trac/sub_tempi_conj “);

"—o = | ");

Yyttt =41 - ");

“epl - =d 1 | ");

“vtranslat =i - ");

"ep = =x 266 -y 266 -w 1 | ");

"vctor -4 - ");

"o - =t 3| ")

"yextract =1 - ~o -~ ");

84

strcat(corrts,
strcat(corrts,
strcat(corrts,
strcat(corrts,

strcpy (corTtt,
streat(corret,
streat(corrtt,
strcat(corret,
streat(corrtt,
strcat(corrtt,
streat(corztt,
strcat(corret,
strcat(corrtt,
strcat(corrte,
streat(corret,
strcat(corrtt,
streat(corrst,
strcat(corrtt,

strepy(b_mltd,
strcat(db_multi,
strcat(b_multi,

strepy(a_multd,
strcat(a_multi,
strcat(a_multi,

strepy(inv 21t,
strecat(inv_22t,

"ez 0 >y O ~w 499 ~h 320 | ");
“vifflmat -4 - ");

*ep /tmp/trac/tmp.3 =j 1 =b 0 *);
“ed 0 =2 1 ");

“ymul ~ii /tmp/trac/sudb_temp2_ 12t);
"ey2 /tmp/trac/eub_templ_conj *);
"= = | ™);

syttt =11 - ");
neol - =d 1 | ");
sytranslat =i - *);
s-p - =x 266 -y 256
“yector =4 = ")}

“ep = =t 3 | ");
*vextract ~§ -~ =0 -
%ex 253 -y 263 ~v T
“viff2mat -§ - ");
“~o /tmp/trac/tmp.3
“-d 0 -2 3 ");

w1l ")

n):
271"

- 1-b0 ")

“ymul =41 /tmp/trac/sviff_dstat “);
%=42 /tmp/trac/b_pasdl_vis ");
"eo /tmp/trac/b.byte_inscens");

“vmul -i1 /tmp/trac/tviff_dstst ");
“=42 femp/trac/a_padi_vis ");
"eg /tmp/trac/a_byte_intemp");

“yg2t -41 /tmp/trac/scenel_z_tempi ");
"-p1 /tmp/trac/inverse_fft_1 =d 1");

strepy(q.£14p128, "vtranslat -1 /twp/trac/inverse_f1t.1 ");
streat(q 714p128, "~o /tmp/trac/vtranslate i -x 128 -y 128 -v 1");
“ytranslat -i /tmp/trac/inverse 2211 ");
“-o /tmp/trac/vtranslats.l -z 64 -y 64 -v

strepy(q._flips4,
streat(q_f1ips4, 1)

strepy(q.£14p32, "vtranslat -i /tmp/trac/inverse 2.1 ");

strcat(q._f14p32,

"eo /tmp/trac/vtranslate_i =x 32 -y 32 -» 17);

strcpy(byte_f1.ip, "vconvert -i /tmp/trac/vtranslate.l ");
streat(byte_f1ip, "o /tmp/trac/convlbyte .1 -B 255 ");
strcat(byte_flip, "-t byte -b 0");

strepy(stat_pk,
streat(stat_pk,
strecat(stat_pk,
streat(stat pk,
streat(stat_pk,
strcat(stat_pk,

“vstats -i /tmp/trac/conv2byte_l *);

"-f /tmp/trac/peak._coords_1 -all) -m 0 ");
"eyar 0 ~84 O ~rms O -vmaz O ~xmax § ");
“eymax 1 ~vmin O -xmin O -ymin O =4 0 ");
“epip 0 -niz O -pts O -ppts O -mpts 0 ");
"egk 0 -kur 0 ~ant O ~con O ~b 1%);

strcpy(byte_sub, "vconvert -i /tmp/trac/sub_.displ_conv ");

streat(byte_sud,

“~o /tmp/trac/ready_4displ -n 2565 ");

strcat(byte_sub, "~t byte =b O%);

strcpy(add. cross, "vadd -i1 /tmp/trac/sub_displ_ dats ");
strcat(add_cross, "-i2 crosshair._data ");
strcat(add_cross, "-o /tmp/trac/sub_displ_conv");

strepy(extr_cross,
strcat(extr_cross,
strcat{extr_cross,

strcpy(ps_stat,
streat(ps_stat,

"vextract -i crossbair_data ");
"-o /tmp/trac/cross_data -x 130 -y 7§
"=y 50 -h 50 ");

"wyotats -i /tmp/trac/teapi_viff v);
"-f /tmp/trac/statistics_ps -all O -mu O ");

85

strcat(ps_stat,
strcat(ps_stat,
strcat(ps_stat,
streat(ps_stat,

strcpy(ce_stat,
strcat{cs_stat,
strcat(ca_stat,
strcat{ca_stat,
strcat(ca_stat,
strcat(cs_stat,

strepy(stat ps,
strcat(stat_ps,
strcat(stat_ps,
strcat(stat _ps,
strcat(stat_ps,
strcat(stat ps,

strepy(stat_cs,
strcat(stat_cs,
streat(stat_cs,
strcat(stat cs,
strcat(stat_cs,
strcat(stat_cs,

strepy(stat._stl,
strcat(stat_stl,
strcat(stat_sti,
strcat(stat_sti,
strcat(stat_sti,
strcat(stat_sti,

strcpy(stat_ssi,
strcat(stat_ssi,
strcat(stat_ssi,
strcat(stat ssl,
strcat(stat_ssi,
strcat(stat_ssi,

strcpy(stat_siblend,
strcat(stat_sidblend,
strcat(stat_siblend,
strcat{stat_siblend,
strcat(stat_siblend,
strcat(stat_siblend,

strcpy(stat_tiblend,
strcat(stat_tiblend,
strcat(stat_tiblend,
strcat(stat_tibland,
strcat(stat_tiblend,
strcat(stat_tiblend,

“egar 0 =8d 0 ~rms O ~vmax O =zmaz 1 ");
“eymaz { ~vain 0 ~zmin O ~ymin 0 ~fa 0 *);
“~pin 0 -nin O -pts O -ppts O -npts 0 ");
%egk 0 =kur 0 =ent 0 =con 0 -b 1");

systats =i /tmp/trac/scenel_vif? *);

"=t /tmp/trac/statistics_cs ~all 0 -mu 0 *);
"eyar 0 =34 0 ~rms O ~vmax 0 ~xmax { ");
“-ysax § -vmin O ~xmin 0 ~ymin O ~in 0 *);
%epin O =min O -pts O =ppte 0 =mpts 0 *);
"egk O ~kur O -ent O =con 0 ~b 1°);

“ystats -1 /tap/trac/tempi_dmean “);

"-f /tmp/trac/statistics_ps ~all O -mu 0 ");
“evar 0 =sd 0 -rms O -~vmax O ~xmax 1 ");
“eymax 1 “wvniz O -zmin 0 ~ymin 0 ~in 0 ");
%=pin O ~nin O =pts O =ppts O -npts 0 ");
“egk 0 =kur O ~ant O =con 9 -b 1%);

“vstats ~i /tap/trac/scenel_4mean ");

"2 /emp/trac/statistics_cs ~all O -mu 0 ");
Yeyar 0 =34 0 ~rms O ~vmax 0 -xmax 1 ");
“eymar ! -vmin 0 ~xmin O ~ymin 0 ~4p 0 ");
"epin 0 -nin O -pts O =-ppts O ~Bpts 0 *);
“egk O ~kur 0 -ent 0 -con 0 =b 1");

“vstats -i /tmp/trac/sub_templ ");

"~f /tmp/trac/statistics_ps -all O -mu 0 *);
Peyar O =8d 0 ~yms O ~vmax 0 -xmax 1);
"~ymax 1 ~vmin O -xmin O ~ymip O =iz 0 ");
%~pin O =nin O ~-pts O -ppts O ~npts 0 ");
"ogk 0 ~kur 0 -ant 0 =con 0 ~b 1");

"vstats -i /tap/trac/sub_scepel ");

"~g /tmp/trac/statistics_cs ~all O -mu 0 ");
"eyar 0 ~sd O ~rms O ~vmax 0 -xmax 1 ");
"eymax 1 -vain O -xmin O -ymin 0 -in 0 “);
“epin O =-nin 0 -pts O -ppts O -npts 0 ":;
"~gk 0 ~kXur 0 -ent 0 =con 0 ~b i");

"vstats -1 /tmp/trac/curr_blend_prev *);
"=f /tmp/trac/statistics_cs -all O -mu 0 ");
“oyar 0 =sd O ~rms 0 -vmax O -gzmax 1 ");
“-ymax 1 -vmin O ~xmin 0 -ymin 0 -in ");

"0 -pin 0 =-nin O -pts O -ppts O -mpts");

" 0 -sk 0 -kur O -~ant 0 =con 0 ~b 1");

“vstats -i /tap/trac/prev_blend_old ");

"~ /tap/trac/statistics_ps -all 0 -mu 0 ");
"evar 0 =pd O -rms 0 -vmax 0 -zmax 1 ");
"eymax 1 -vain 0 ~xmin O ~yminp 0 -in ");

"0 -pin O -pin 0 ~pts O -ppts O -mpts”);

" 0 -8k 0 ~Xur O ~ant 0 =con 0 -b 1");

strcpy(Cstat, "vatats -4 /tmp/trac/real_4stat ");

strcat(Cstat,
strcat(Cstat,
strcat{Cstat,
strcat(Cstat,
streat(Catat,

strepy(c2real, "vctor -i /tmp/trac/vtranslate.l -o /tmp/trac/real_4stat”);

“-f /tmp/trac/Catatistics -all O ~mu O ");
"-var 0 8d O -rms O ~vmax 0 -xmax 1 ");
“~ysax 1 -vmie O ~zmin O -ymip 0 -ip ");
"0 -pin O -nin O -pts O -ppts O -mpts");

* 0 ~gk O ~kur 0 ~ent 0 -con 0 =b 1%);

strcat(c2real, " -t 1");

strepy(si_x bin,

"vmul -i1 /tmp/trac/scenel_viff *);

86

strecat(sl _x _bin,
strcat(sl _x _bin,

strepy(tix bin,

*=12 /wap/trac/tap_scemel ");
“eo /tmp/trac/ecensi_vife");

*vmul ~if /tmp/trac/tempi_vife *);

strcat{ti x.bin, "-12 /tmp/trac/twp_tespl *);
streat{tl_x_bin, “~o /tmp/trac/tempi_viee");

strepy(blend_si, "vblend =11 /tmp/trac/scanel _viff -42 ");
streat{blend_si, “/tap/trac/templ_vite =x 0.8 ~o ");
streat(blend_si, "/tmp/trac/curr.blend prev");

strepy(blend _t1, "vblend =11 /tmp/trac/templ vite ~12 *);
strcat(blend t1, "/tmp/trac/eld_vife ~x 0.8 ~o *);
streat(blend_t1, */tap/trac/prev_blend old"); .

strepy(blend x_t1, “wvmul -11 /tmp/trac/tempi viff =32 »);
strcat(blend.x_t1, "/tmp/trac/tap_templ -o /tmp/trac/tempi_vife");

strepy(blend x. 81, “vmnl ~13 /tmp/trac/scenel_vif? -12 *);
strcat(bland x_sl, “/tmp/trac/tap_scenel o /tmp/trac/scensi_viff");

strepy (emplx_til,
strcat(cmplx_ti,

“vrtoc -!. ‘tmp/trac/prev_blend.old -0 *);
"/tmp/trac/blend_2cmplz_ti ~t 1");

strepy(cmplz_si, "vrtoc -11 /tmp/trac/curr.blend_prev o *);

strcat(cmplx.sl, “/tmp/trac/blend 2cwplx_si ~t 17);

strepy(hpt_ti, “vhpf ~{ /tmp/trac/blend 2cmplx.ti ~o *);
strcat(hp?_ti, "/tmp/trac/prev_blend_old - 3 -¢ 0.5");

strepy(hpt_ si, “vhp? ~i /twp/trac/blend_2cmplxz_si ~o *);
strcat(hp?_si, "/tmp/trac/curr_blend_prev -n 3 =c 0.5");

strcpy(ti_2real,

"vctor -1 /tmp/trac/sub_tempi -o *);

strcat(ti_2real, "/tmp/trac/ti_for_stat -t 1");

strepy(si_2real,
strcat(sl_2real,

strepy{a_2asci,
strcat(a_2ascl,

strcpy(b_2asci,
streat(b_2asci,

strcpy(a_2asc2,
strcat(a_2asc2,

strcpy(b_2asc2,
strcat(b_2asc2,

strcpy(a_2asce3,
strcat{a_2asc3,

strepy(b_2asc3,
strcat(d_2asc3,

“vctor -1 /tmp/trac/sub_scene! -0 ");
»/tmp/trac/si_for_stat -t 1");

“vprdata -i /tmp/trac/atarg 4stat *);
"=2 /emp/trac/ttarg ascii_data ~m O");

“vprdats -1 /tmp/trac/brarg 4stat ");
"=2 /tmp/trac/starg_sscii_data -m 0");

"vprdata =i /tap/trac/a_targ.rect ");
"=2 /tmp/trac/a_targ.ascii -m 0");

“vprdata -i /tap/trac/b.targ_rect ");
"-1 /tmp/trac/b_targ_ascii -a 0");

“vprdats - /tmp/trac/tbkgnd 4stat “);
"=f /tmp/trac/tbkgnd_ascii_data -m O");

"vprdata =i /tmp/trac/sbkgnd 4stat ");
“=f /tmp/trac/sbkgnd_ascii_data -m 0");

strepy(a_2bytel, "vconvert -i /tmp/trac/a_targ 2vifs ");
streat(a _2bytel, "-o /tap/trac/a_targ.2byte -n 99 -t byte -b O");
strcepy(b.2bytel, "veonvert -4 /tmp/trac/b_targ 2vite);
strcat(b_2bytel, "-~o /tmp/trac/b_targ.2byte =n 99 ~t byte -b O");
strepy(a.2byte2, "vconvert ~i /tmp/trac/a_targ 2viff ");
strcat(a_2byte2, "-o /twp/trac/a_targ_2byte =» 255 =t byte -b 0");

87

-

stropy{b_oytal, “vcomvert =i /tmp/trac/b_ targ.dvifte *);
strcat(b_2byte2, “~o /tup/trac/v_targ_Zbyte -n 256 -t dyte

strcpy(dynl_si, "vdyth -4 /emp/trac/cury_blend. prev ");
strecat{dyni_si, "-o /tmp/trac/bin 3x3.81 =¥ 3 ~h 3 ~v *);
strcat(dyni_si, “265 -t 0");

strepy(dyni_ti, “vdyth -4 /tmp/trac/prev_blend.old ");
streat(dyni tl, "~o /tmp/trac/bin_3x3_tl -v 3 -b 8 -v *);
streat(dyni_t1, 265 -t L H

strepy(dyn2.s1, "vdyth -1 /tap/trac/scemei_vitf ");
strcat(dyn2_si, "-o /tmp/trac/bin 32381 -w 3 ~h 3 v "); -
strcat{dyn2.s1, “255 -t O");

strepy(dyn2.tl, "vdyth -1 /tmp/trac/tempi._viff *);
strcat(dyn2_tl, “~o /tap/trac/bin 3x3.t1 v 3 =k 3 ~v *);
strcat(dyn3_ti, “2566 =t O");

strcpy(and_si, “vapd -i1 /tmp/trac/bin_4and_ si ");
strcat(and_si, “~12 /tmp/trac/bin_3x3_81 =0 ");
strcat(and_ si, “/tap/trac/tmp.scensi™);

strcpy{and_ tl, "vand -11 /tap/trac/bin_sand_ti ");
strcat(and.t1, “-12 /tap/trac/bin_3z3_t1 ~¢ *);
strcat(and_ti, "/tmp/trac/tap_tempi”);

strepy(padti, "vpad -1 /tmp/trac/sud_tempi ");
strcat(padti, "~o /tmp/trac/Ti_disp ~r 64 -c 64 *);
strcat(padtl, “~d 0 -o O ~j 255 -k 0");

/ o/
/+ Initialize miscellanecus command strings. */
/ /

strcpy(mean_cs, "grep Mean /tmp/trac/statistics_cs ");
strcat(mean_cs, "> /tmp/trac/cs_mean_data");

strcpy(mean_ps, "grep Nean /tap/trac/statistics_ps ");
strcat(mean ps, "> /tmp/trac/ps_mean_data");

strcpy(corr_mean, “grep Mean /tmp/trac/Cstatistics);
streat(corr_mean, "> /tmp/trac/wean_data®);

strcpy(corr_var, "grep Variance /tmp/trac/Cstatistics ");
strcat(corr_var, "> /tmp/trac/var_data");

strcpy(corr_stdev, "grep Std. /tmp/trac/Cstatistics ");
strcat(corr_stdey, "> /tmp/trac/stdev_data™);

strepy(corr_max, "grep High /tmp/trac/Cstatistics *);
strcat(corr_max, "> /tap/trac/max_data");

strcpy{corr_min, "grep Lov /tmp/trac/Cstatistics *);
strcat(corr_min, "> /tmp/trac/min_data®);

“b 0%);

strepy(copy.cs, "cp /tmp/trac/scenel_vif? /tap/trac/svifs_sstat™);

strcpy(copy_ps, “cp /tmp/trac/templ_viff /tap/trac/tvif?_d4stat");

strcpy(ti_4stat, "cp /tmp/trac/tmp templ /tmp/trac/tespl_4stat”);

88

strepy(si_dstat, “cp /tmp/trac/tap.scenel /tap/trac/scenel_dstat”);

strepy(gti.4stas, “cp /tmp/trac/trev._bin_dstat /tmp/trac/asecond 4stat”);

strepy(hi_cs, "grep Righ /tmp/trac/statistics.cs *);
streat(hi_cs, "> /tmp/trac/high_data”);

strepy(hi_ps, “grep High /tmp/trac/statistics_ps *);
strcat(hi_ps, "> /tap/trac/bigh_data™); .

strepy(gsi_dstat, “cp /tmp/trac/arev_bin_dstat /tap/trac/bescond 4stat™);
strepy(cti_dstat, “cp /tap/trac/templ_viff /tmp/trac/templ_4stat");
strcpy(cel_dstat, “cp /tmp/trac/scenel _vif? /tmp/trac/scensi_4stat™);

strepy(clr_ser, "clear”);

/ o/

/* Copy vext image file to /tmp/trac/current_scens. s/
/ s/
vhile(modews's?)

{

12((2p6 = fopen(files[count], “rb"))esNULL)
{

prist? ("Error opening Xs!\s”, files[count]));

exit(1);
}
i2({2p1 = fopen("/tmp/trac/currant_scene”, "wb"))==NULL)
{

print? ("Error opaning /tmp/trac/current_scens!\n");
exit(1);

} .

character = fgetc(fph);

i2(terror(2ps))

{

printf ("Error reading Ya!\a", files[count]);
oxit(1);
}
while(character!=EOF)
{
tputc(charactar, 2pi);
it (terror(tpi))
{ .
print? ("Error writing to /tmp/trac/current_scene!\n");
exit(l);
}
character = fgetc(2pb);
1f(terror(2ps))
{

print? (*Error reading %Is!\n”, files[count));
exit(1);
}
}
fclose(2pE);
fclose(fp1);

/e —~—-s/
/e Display an image in its original form and resams s/
/* the 2ile currsnt_scans to previous_scans. ./
/e o/
systea(rav_cs);

system(padd_225);

system(delay);

systen(byte_fov);

89

12 (passe=0)
{
12(display»='y’)
{
system(display_fov);
suaperenane ("/tap/trac/currest_scens”, “/tmp/trac/previcus_scens");
12 (svapi=0)
{
print?("File renaning operation 85 falled!\n");
exit(1); ' .
}
)
12(pasns!=0)
{
swap = rename("/tap/trac/previcus_scens”, "/tmp/trac/old _scene™);
12 (svapi=0))
{
priot?("File renaming operation 96 failed!\n");
exit(1);
}
swaperenane (*/tap/trac/current _scens”, "/tap/trac/previous_scene”);
i2(swapi=0)
{
printf("File renaming cperation 87 failed!\n");
exit(1);
}
}
/* o/
/* Detexrmine target range and display to screen, ¢/
/ o/
for(im0; 1¢128; i¢¢) string[i) = files[count](i];
length = strlea(string);
for(§=0; 3<5; je*) termi[j) = stringllengtk - 9 + jJ;

termi[j) = *\0o*;
fr_info = atoi(term!);

it (index*=0)
e
print2("\n");
systes(clz_scr);
printf ("Target\nRange\n");
printe("-eec==\n");
index » 20;
}
print?("X5d\n", fr_info);
index = index -~ 1;

count = count ¢ 1;

/» ./
/* Trigger the display of targeting menu. s/
/e o/
it (pass==2)

{

12((2p2 = fopen("/tmp/trac/starti_flag", “w"))wsNULL)
{ .

print? ("Error opening /tmp/trac/starti_flag!\n");

exit(l);
}
fputc(on, 2p2);
2close(2p2);
}

90

pass © pass ¢ 1;
12((tp4 = fopen(”/tap/trac/state_flag", “r"))=sNULL)

{

pristf("Rrror opening /tmp/trac/state_flag\n!");
oxit(1);

}

state_flag = fgetc(tpd);

fclose(tpd);

/e ./
/¢ Determine targeting state requested by user o/
/% and reset the file state_flag. ./
/ 74
1 (state_flag==on)

{

state_flag = of?;

12((tps = topen("/tmp/trac/state_flag", “r"))esNULL)

{
print? ("Exror opening /tap/trac/state_flag!\n"};
oxit(1);

}

tputc(ofs, £pB);

fclose(2p5);

i2((fp1 = topen(”/tmp/trac/state_info”, “r"))=eNULL)
{

print?("Error opening /tmp/trac/state_info\n!");
exit(1);

}

state = fgetc(2pl);

/ o/
/* Determine the number of image frames to skip. ®/
/ ./
if(state=='s’)

{

12((2p2 = fopan("/tmp/trac/startl_flag", "v"))==NULL)
{

printf("Error opening /tmp/trac/starti_flag!\n");
exit(1);

}

tputc(ofs, 2p2):

fclose(2p2);

fgets(string, 128, tpi1);
2gets(string, 128, 2p1);

step = atoi(string);

count = count ¢ step;

if((argc - count)<3) state = ’¢’;

jod3 = §;
pass = 1;
}
fclose(2p1);
}
/e /
/* 12 last image in sequence has bean displayed or per o/
/* user’s request, kill background process, and exit. o/
/e o/
1f2(state=='e’ || (argc-count)w=1)

{

strcpy(search, "ps -aux | grep putimage | grep -v");
strcat(search, " ’grep’ > /tmp/trac/job_numbers”);
systea(search);

91

12((2pt » 2open(™/tmp/trac/job aumbders”, “r"))esyULL)
{
priat?(“Esror epeniag /tap/trac/ job_mumbersi\s");
axit(1);
}

tgets(string, 128, fpd);

for(m=0; w<6; m++) pa_value(a) = stringln + 9];
ps.value(n] = *\0’;

jobi = atoi(ps_value);

fclese(2pe);

sprintf(k.displ_fov, “kill ¥d°, jobl);
system(k_displ_tov); .

12((2p8 & topen("/tmp/trac/E0S_2lag", “¥"))==NULL)
{

print?(“Irror opening /tmp/trac/E0S_flagi\n");
exit(l);

)]

tputc(on, 2p6);

fclose(2pS);

print2("Yc\n", *\007');

12(Job3==0)

{
printg (/e “);
printf("ececemacs/\n");
printf("/e This program has been terminated sither");
printe (" in re- s/\n");
print2("/e ponse to the user’s request or because ");
privte(“the di- o/\n");
printf("/e gitized -images for this sequence bave b");
printf("eemn ox~ */\n");
printf("/e bausted. If the program 'trac_mepu’ bas");
printf(" mot ¢/\n");
printf("/e already been terminated, please reponse”);
print2(" with s/\n");

printf("/e option ’e’ to terminate it now. ")
printe(" s/\a");
printg("/e "y;
printt ("-ececcacs/\n");

}

slse i2(jobIe=y)

(.
printe (/e L
priptf(ne~eceee. »/\n");

print2("/e Program terninated. The requested numbe”);
print?("r of */\a");
printe("/e image frames to be skipped exceeded the");
print? (" number ¢/\n");
print2("/s of remaining un-displayed image frames *);
printf(" in the ¢/\n");
print?("/s seqeusnca. Please reponse vith option *);
print2(” 'e’ to */\n");
printf("/e tarminate the program ’trac_menu’ pow. ");
printe (" s/\n");

priotf("/e "y
printt(ececcaca o/\n");
b
axit(0);
}
/e ——— o/

92

/e Target tracking loop. ¢/
/

while(staten='t’)

i2(cyclo==0)

{

index = O;

12((2p1 » fopen("/tmp/trac/coords_flag.1%, "r"))e=BULL)

{
puts("Irror reading trom /tmp/trac/coords_flag. 1!");
exit(1);

3}

/e »/

/¢ Delay until user has imputted o/

/* required correlation paramsters. s/

/e o/

temp ® fgetc(fpi);

while(temp!won)
R ¢

fclose(2pl);
12((2p1 » fopan("/tmp/trac/coords_flag_ 1", "r"))=eNULL)
{

puts(“Error reading from /tmp/trac/coords_flag 1!%);
oxit(1);
}
temp = fgetc(2pl);
fclose(2pl);
12((2p2 = fopen("/tap/trac/coords_flag_1*, "w"))=aNULL)
{

puts(“Error writing to /tmp/trac/coords_flag.1!");
exit(1);

}

tputc(o2?, 2p2);

fclose(2p2);

/* /
/* Retrieve inputted target coordinates and options. ®/
/= o/

12((2p4 = 2open("/tup/trac/coords_into_ 1", "r"))=sNULL)

{
puts("Error reading from /tmp/trac/coords_info_1!\n");
exit(1);

>

fgets(string, 128, fpd);

x.value = atoi(string);

tgets(string, 128, fpd);

y.value = atoi(string);

fgots(string, 128, tpd);

mthd = string(0);

/ o/
/* Determine correlaticn method chosen. s/
/* -~e/
if(mthdme’y’)

{

strepy(stx0, "Thresholded (0 or 255)");
strcpy(renamel, "a_");

else if(mthds=’'b?)

{
strepy(strO, "Thresholded (w/ gray-scals)™);
strcpy(renameQ, "b.");

93

else if(mthdws’c’)

{
strepy(str0, "Truth template and scene™);
strcpy(renanel, “c.");

}

else if(mthdeetd’)

{
strepy(str0, “Truth templ v/ unmodified scene”);
strcpy(rename0, *d_");

else if(wthds='e’)

{ -
strcpy(str0, "Thresholded blend (0 or 265)%);
strepy(renamed, "o ");

slse if(mthdm=’f’)

{
strepy(str0, "Thresholded blend (w/ gray-scale)");
strepy(renaned, “2.");

)

olse if(mthds='g’)

{
strepy(str0, "Unmodified gray-scals images®);
strepy(renaned, “g.");

else

{
strepy(str0, "Optical adaptive tracking simulstion.™);
strcpy(renamel, "zo_ ");

rename3[0] » '.*;
rename3[i) = '0’;
Tename3[2] = '0’; .
rename3(3] = '\0’;

2geta(string, 128, fpd);
if(mthdee’a’ || mthd=s’'b’' || mthdaw'e’ || wthd=='?’)
{
factor = atof(string);
rename3[0) = stringli);
rename3{1] = string(2);
renane3[2) » string(3);
resame3[3] = ’\0’;
}
fgets(string, 128, 2pd);
size = stringl0);

/ o/
/* Determine binarization techaique chosen. »/
/e o/

strepy(reanamel, “none_");
1f(mthde=’a’ || mthde='d’' [| mthd=='e’ || mthd=='2’)
{

fgets(string, 128, fp4);

bin_state = stringl0];

strcpy(str2, "Scene average");

strcpy(renamel, "scan_ ");

if(bvin_states=='c’)

{
strcpy(str2, "Cline segmentation”);
strcpy(renamel, "clin_");

94

I

12(bin_states='s’)

bin_state ® 's’;
strcpy (str2, "Line~by-line average”);
strepy(renamel, "lime %);

)}
)
I o/
/e Determine if edger used. */
/e ./
1f (mthdwe'g?)
{

tgets(string, 128, fp4);
tgets(string, 128, fpd);
edger = string(0);
if(edger=="y’) : .
{
strepy(str2, "Edge Extraction”);
strcpy(renamel, "edge_");

fclose(tpd);

/* /
/% Set tbe template and scene sizes. s/
/* ./
if(sizews’}l’)
{
y.templatel _size = 40;
x.templatel_size = 64;
y--cmol,sizo = 120;
x_scenel_size = 192;
pad_size = 256;
strcpy(stri, "Large (Tmpl=64x40, Sco*192x120)");
strcpy(rename2, "1%);
)
olse if(sizem=’'s’)
{
y.templatel_size = 20;
z.templatel_size = 30;
y.scenel_size ®» 38;
x.scenel_size » 60;
pad_size = 64;
strcpy(strl, “Small (Tmpl=30x20, Scp*60238)");
strcpy(renane2, "s5%);

}

else if(sizew=’n’)

{
y.templatel_size = 28;
x.templatel_size = 42;
y.scanel_size » 72;
z.scenel_size = 116;
pad_size = 128;
strcpy(stri, "Nedium (Tmpl=42x28, Scn®116x72)");
strcpy(raname2, "=");

}

else if(sizemm’y?)

{
y.templatel_size = 20;
z_templatel_size = 30;
y-scepel_size 38;
x.scenei_size = 60;

85

m‘\

pad_size » &4;
strcpy(stri, "Adapt/S (Tmpl=idapt, 3ca=60z38)");
strcpy(renane2, "a");

slse

{
y-templatel_size = 20;
x.templatei_size = 30;
y.scenel_size = 320;
x_scenel_size = 499;

pad_size & 512; 7 N X : .

strepy(stri, "Adapt/F (Tapleidapt, Scas499x320)%);’
strcpy(rename2, "2%);

for(w=0; n<s; mee)
{
torn2{n) * tru_catr(count ~ $)[n);
)
term2{a] = ’\0’;
tr_info = atoi(term2);
for(i=0; i<3;.iee)

{
/ ./
/® Ratrieve the x~ coordinate »/
/* of target locations. o/
/* ./
J=0;

temp = tru.catrcowmt - 1) [ml;
while(tempi=’,’)
{
terni[j) = temp;
J=3+ 4
temp = tru_cntrlcount - 1)[= + §);
}
termi(j] = *\0’;
x_.term » atoi(termi);
z2_ term = atof(termi);

'EFREY
/v ./
/* Retrieve the y- coordinate e/
/* of target locations. s/
/» o/
for(k=0; X<7; ke+)
{
term2{x) = tru_catrlcount - 11[= ¢+ § ¢+ X]);
)

term2[x) = "\0’;

y.ters = atoi(term2);
y.term & 512 - y_term;
yf_tern = atof(term2);
yf_term = 512.0 - yf_ters;
Re g+ k¢ 21;

integl = ({(x_value - x_term) ¢ (x_value - x_term));
integ2 = ((y.value - y_term) * (y_value - y_tera));
result » sqrt({double) integl ¢ (double) integ2);

if(4==0)

{
distance = result;
x_coord = x_term;
y.coord = y_term;

96

|C7?

JEXTROR Y

xf_coord * xf_term;
ytf_coord ® yf_ters;
targ.num ® § ¢ §;

}

/* +/
/* Determine whether imputted target coordinates ¢/
/¢ correspond to an actual target location. s/
. o/

olse if((distance = result)>»0) .
{
distance ® result;
z. coord = x_term;
y.coord » y_tera;
xf_coord = xf_term;
yf.coord = yf_ters;
targ.num = § 4 1;
}
}
12((distance - 20.0)>0)
{
x.coord = x_valus;
y.coord = y_valus;
xf_coord = ((double) x_value);
yf.coord = ((double) y_value);
targ.nua = 0;

}

if(targ_nume=0)
{
strepy(end, " 0");

else if(targ_num==1)
{
strepy(end, "_1");

else if(targ._nume=2)
{
strcpy(end, "_2");

slse strcpy(end, " .3");

/e /
/+ Pass true target coordinates to »/
/s the prograa trac_menu. ./
/e o/

12((2p6 = fopen("/tmp/trac/coords_info_2", "v"))e=NULL)
{
print? ("Error opening /tmp/trac/coords_info_2!\n");
exit(1);
)
tprint? (2ps, “1d\nl8.27\z", targ_num, xf_coord);
fprinte(2p5, "%6.2f\nkd\n", yt_coord, tr.info);
fclose(2pB);

i2((tp1 » fopen("/tmp/trac/coords_flag. 2", “v"))==NULL)
{
print? ("Error opening /tmp/trac/coords_flag_2!'\n");
exit(1);
)
fputc(on, tp1);
fclose(2pl);

/e ---- —ecs/

/% Valit for user’s response to allov tracking =/

97

/¢ on true varsus inputted target coordimates. */
/e ./
1f(targ aum!=0)

12((2p2 » fopen("/tap/trac/coords_tlag. 1", “r"))ss¥ULL)

pristf ("Error cpening /tmp/trac/coords flag.i!\s");
exit(1);
}

tomp = fgetc(fp2);
while(tempi=on)
{
fclose(Lp2);
12((2p2 = topen("/tmp/trac/coords_flag. 1", "r"))esNULL)
{
printf("Error opening /tap/trac/coords_flag. 1i1\z");
exit(1);
}
temp * fgetc(fp2);

fclose(2p2);
12((fp4 = fopen("/tmp/trac/coords_flag.1", "v"))esNULL)

{
printf ("Error opening /tap/trac/coords_flag.i!\n");

exit(1);
)
fputc(of?, 2p4d);
tclose(fpd);
/ /
/* Retrieve the user’s response. ¢/
/ /

12((2pb = 2open(™/tmp/trac/coords_info_1", "r"))e=NULL)
{
puts("Error reading from /tmp/trac/coords_info_1{\n"};
exit(1);
)
temp = fgetc(fp5);
2close(2p8);

if(tempo='n’)
{
z_coord = x_valus;
y.coord = y_valus;
xf_coord = ((doudbls) x_value);
yf_coord = ((doubls) y_value);
)
}

x_coord » 150 ¢+ x_coord;
y.coord = 40 + y_coord;

zf_contr = xf_coord;
yif_cotr = y?_coord;

xf_coord » 160.0 ¢+ xf_coord;
yf.coord = 40.0 ¢ y?_coord;

L et e o/
/* Generate adaptive template dimensions and o/
/* location for correlation. o/
L L L PR L S S et eI L L L ./
i2(sizenm'y’ || gizewn't’)

98

zedge = x_crord -~ 200;
yodge = y_c ord -~ 90;
1¢2(zedge < 0)
{

xedge ® O;
}

12 (zedge > 398)

{
zedge = 398;

b
12 (yedge < 0)
{
yodge = 0;
)
12 (yedge > 220)
{

yodge = 220;

strepy(extr_win, "vextract -i /tmp/trac/scenel_vitt -0 = ");
sprintf(string, "-x %d -y Xd -» 100 -h 100", xedge, yedgse);
strcat(extr_win, string);

strcat(extr_win, * | viff2mat -4 - ");

strcat(extr_win, "~o /tmp/trac/tap_i =J 1 -b 0 %);
strcat(extr_win, "-d 0 -2 0 ");

system(extr_win);

12((2p1 = fopen("/tmp/trac/tap_1", "r"))==NULL)
{

printf ("Error opening /tmp/trac/tmp_1i\s");
exit(1);
)

tgets(string, 128, 1p1);

tor (yy = 0; yy <= 99; ++yy) {
for (xx = 0; xx <= 99; *exx) {

12((2mcant(fp1, "Xd", &xy(xx](yy)))==NULL)
{
print? ("Error reading from /tmp/trac/tap.1!'\n");
. exir(1);
}
}
fscant (2p1, "Xes");
}
fclose(2pl);

tmpx = x_coord - 160 - xedge;
tapy = y_coord ~ 40 - yedge;

/e o/
/* Check to ses if current selected pixel is part s/ -
/* of & target. o/
/ o/

42 (zy [tapx] [tmpy] <= 70)
{

cownt = O;
al = tmpy;
bl » tmpx;
€l = twpy;
d1 = tmpzx;

99

1

while(cownt == 0)

{
al » al - 1;
bl e bl ¢ §;
cl =l ¢
di » d1 - §;
i2(al € 0) at = 0O;
i2(b1 > 100) b1 = 100;
if(c1 > 100) 1 = 300;
i2(d1 € 0) 41 = O;

for(zz = di; xx <= bi; ¢exx) {
12 (xy[xx) [a1] >= T1)
{
cownt & 1;
12 (xy(xx] [a1] >= (xy{tmpx) [tapy] ¢ 1))
{

tapx & xx;
tapy = al;

)
}

tor(yy = al; yy <= ci; +oyy) {
i2(xylo1) [yy) >= 71)
{

comnt » 1;

12(xy[b1] {yy] >= (xy[tmpx] [tapy] ¢ 1))
{

tmpz = bl;
tupy * y¥i

}
}

tor(zx » di; xx <= bi; ++xx) {
12 (xy[xx) {e1] >= 71)
{
cowmnt = 1;
12(xy[xx) [c1] >= (xy(tmpx]) [tmpy) ¢+ 1))
{
tapx ® xI;
tmpy ®= ci;

}
b4

for(yy * al; yy <o ci; ++yy) {
i2(xy(a1) (yy] >= 71)
{

comnt = 1;
12(xy[d1) [yy) >» (xy[tmpz]) [twpy) + 1))
{
tmpx = d1;
N t=py = 77

}
}
17((a1==0)2k(b1w=99) 2k (c1==PP) AR (a1 ==0))
{

tEpX = permx;

tEpY ® permy;

100

\C

}
)

/* ./
/¢ 7iad bounding box of targes. o/
/ /

al = tmpy - §;
a2 = 0;
bl ® tapx ¢ 1;
b2 = O;
cl ® tapy ¢ 1;
c2 - 0;
d1 = tmpx - 1;
d2 = 0;

while(a2en0 || b2w»=0 || c2==0 || d2w=0)
{
12(a2 == 0)
{
al = al -~ 1;
}
a2 = 0;
cownt = 0;
i12(a1 < 0)
{
al = 0;
a2 = 3;
)
tor(zz = di; xx <= bi; ++xx) {
it{xy{xx2 [al1) <= 700
{
cownt = ctownt + 1;
}
}
check = (cownt / (b1 - 41));
if(check >= 0.9)
{
a2 = 1;
}

412(b2 =» Q)

{

" bl ®bley;

)

2 = 0;

cownt * O

12(v1 > 100)

{
b1 = 100;
b2 = §;

}

tor(yy » al; yy <= ci; ++yy) {
iz(xy[v1) [yy) <= 70)
{

cownt = cownt ¢+ };
)
}
check = (cownt / (ci - al));
i (check >= 0.9) -

{
b2 = 3;
}
i2(c2 == 0)

101

{
cl mecl ey
)
c2=0;
cownt » 0;
42(ct > 100)
{
el = 100;
c2 e i;
)
for(xx » d1; xx ¢= by; exx) {
12 (xy[xx] [c1) <= 70)
{
cownt & cownt ¢ 1;
}
} .
check = (comnt / (b1 = d1));
4f(check >= 0.9)
{
c2 e 1;
}

1£(42 == 0)
{

a1 = 41 ~ 1;
)}
42 = 0;
cownt = O;
ir(d1 < 0)

tor(yy = al; yy <= ci; ++yy) {
12 (xy[d1) [yy) <= 70)
{

cownt = cownt ¢ 1;

}
}
cbeck = (cownt / (¢ - al));
i2(check >= 0.9)
{

d2 = 3;
)

)

z_coord = ((bi + 1) / 2) + xzedge;
y.coord = ((ci + a1) / 2) + yedge;
permx = x_coord;
permy * y_coord;

x_.templatel_size = bi - 41;
y.templatel _size » cl - al;
if(z_templatel_size > 64)
{

x_templatel_size = 84;
}
if(y_templatel_size > 64)
{

y.templatel_size = 64;

x_value = 1 _coord;
y.value » y_coord;

102

P

xt_coord * ((doudle) (b1 ¢ d1) / 2) ¢ xedgs;
yt.coord = ((doudble) (ci ¢ al) / 2) ¢ yedge;
zf_cantr = xf_coord;
yi.catr * yf_coord;

x.coord = 150 ¢ x_coord;
y.coord » 40 ¢ y_coord;
xzf _coord = 150.0 ¢ x?_coord;
yt_coord = 40.0 ¢ yf_coord;

}

/» ./
/¢ Compute upper left x- and y- pizsl coordinates s/
/* for sub-images template! and scemel. ./
/e ./

x.templatel » x_coord - (x_templatel_size / 2);
Y.templatel = y_coord - (y_templatel_size / 2);
x.scenel ® x_coord - (z_scenel_size / 2);
y.scenel » y_coord ~(y_scenel_size / 2);
i2(sizewnrg’)
{

x_scene! * 150;

y.scenel = 40;

12 (edgeri=’y")
{

strcpy(extr_si,
strcat(extr_si,

“vextract -i /tmp/trac/scenei_pad_4x8 ");
"-o /tmp/trac/sud_scensl ");

sprintt(string, "-x %14 -y X4 ", x_scenel, y_scensl);
streat(extr_si, string);

sprintf(string, "-v %Id ", x_scenel_size);
streat(extr_sl, string);

sprint?(string, “-h 14", y.scenei_size);
strcat(extr_si, string);

strcpy(extr_t1, "vertract =i /tmp/trac/tempi_pad_4x8 ");

strcat(extr_ti, "~o /tmp/trac/sudb_templ ");
sprintf(string, "-x %d ", x_tesplatel);
streat(extr_ti1, string);

sprintf(string, "~y Id ", y_templatel);
strcat(extr_t1, string);

sprintf(string, "-v 1d ", x_templatel_size);
strcat(extr_t1, string);

sprintf(string, "-b %d", y.templatel_size);
strcat(extr_tl, string);

12 (edger=='y’)

<)
strepy(extr_si, "vdr? -i /tmp/trac/scenei_pad 428 -0 - ");
strcat(extr_si, "-al 0.35 =22 0.35 -v 9 -t1 6 -t2 8 =1 7 ");
strcat(extr_si, " | vextract ~i -~ ");
strecat{extr_si, "-o /tmp/trac/sub_.scensl ");
sprintf(string, "-x Xd -y Xd “, x_scensl, y_scensl);
strcat(extr_si, string);
sprint?(string, "-v %d ", x_scenel_size);
strcat(extr_si, string);
sprintf(string, "~h 1d", y_scenei_size);
strcat(extr_si, string);
strepy(extr ti, "vdr? -i /tmp/truc/templ_pad_4x8 -0 - ");
strcat{extr_tl, "-al 0.35 ~a2 0.35 -v 9 ~t1 6 ~t2 8 -1 7 ");

103

strcat(extr_t1, * | vestract =4 -~ *);
streat(extr_ti, "-¢ /tmp/trac/sud_tespl *);
spristf(string, "=z %4 “, x_template});
strcat(extr.ti, string);

spriatf(string, "~y 14 ", y.templatel);
streat(extr.tl, string);

sprintf(string, "-v 14 *, x.templatei_sixe);
strcat{extr.t1, string):

sprintf(string, "-h 14", y.templatel_size);
streat(extr_tl1, string):

}

/e ./
/* Date and time stamp the output file used o/
/% to record the correlation process. ./
/ o/
it (targ_num!=0)

{

strcpy (summary, namel);

strcat(sumsary, renane?);
strcat (susmary, renamel);
strcat(summary, rename2);
strcat(summary, renamel);

sprintf(repaned, “mkdir Xs”, summary);
systen(renaned);

strcat(summary, */");
strcpy(plotnane, summary);
if (carg_nuw==1)
{
strcat{plotaase, "range_errer.i"};

else if(targ nuw==2)
{

strcat(plotname, "range.error.2);

slse

{
strcat(plotname, “range_error.3");
}

12((2p6 = fopen(plotname, "¥"))msNULL)

{
priat? ("Error opaning file range_error!®);
oxit(l);

>

strcpy(plotnams, sumsary);
12(targ_aume=1)

strcat(plotoame, "range_location.i™);
else if(targ._nume=2)
{ strcat(plotname, “range_location.2");
else

{

strcat(plotname, “"range_location.3");

104

.

i2((2pT = topen(plotaams, “v"))s=sNFULL)
{

printf("Error opening file range_location!”);
exit(1);
)}

strcpy(plotname, susmary);
it (sarg nme=1)
{
strcat(plotaame, “other_targets.i®);

else if(targ_sume=2)
{ .
strcat(plotaame, "other_tsargets.2");

slse
{
strcat(plotname, "other_targets.3");

12((2p8 = fopan(plotname, “v"))==NULL)
{

print? ("Error opening file other_targets!");
exit(1);
>

strcpy(plotnans, summary);

strcat{summary, rensael);
strcat(summary, renamel);
strcat (summary, rename?);
strcat(susmary, resame3);

strcat(summary, end);
12((2p3 = topen(summary, "v"))esyULL)
{

print? ("Exror opaning ¥s!\n", swmmary);
exit(1);
}

printf ("Xc\n”, ’\007’);
print?(“ess Correlation summary is being recorded");
printf(" in: Is ees\n”, summary);

)

digiti = 0;
digit2 = 0;
digitd = 1;

)}

if(opte='s’ ! opte=’n’ || optes’l’ || opte=’t’)
{

cycle = 0;

”t - l‘l:

}

old.x_templ = x_templatel;
old_y_templ » y_templatel;
old_x_scene] = 3z _scenel};
old_y_scene]l = y_scenel;

[8momm oo e e e oo ./

/¢ Ratrieve next image and copy to ‘current_scems’. o/
S o/
12((2p1 » fopen(2iles[commt], “rd*))espULL)

printf(“Lrror opening Ist\n", fileslcount));
oxit(1);

}
12((2p2 » fopen(™/tmp/trac/current. scens”, “wb"))=aNULL)
{

print? ("Error opsning 1 /tmp/trac/curreat_sceas!\n");
oxit(1);

}

charactar = 2getc(tpl);

12 (ferror(tpl))

{
print?("Error reading %s!\n", £iles(count));

oxit(1);

while(charactert=EOF)
{
fputc{character, 2p2);
if(ferror(tp2))
{
printf ("Exror writing to /tap/trac/current_scene!\n");
oxit(1);
}
characver » fgetc(pl);
if(terror(sp1))
{

print? ("Error resding Lst\n*, files{count));
exit(1);
¥

b
fclose(fpl):
fclose(2p2);

/= ./
/+ Convert image data to VIFF format. o/
A /
system(r2v_cs);

systemn(z2v_ps);

system(pad_4displ);

12 (athdee’g?)

{
system(copy.cs);
system(copy_ps):
system(padax8_cs);
system(paddxs _ps);

/e ./
/* Truthed template correlated with o/
/* unmodified gray-scale scens. s/
[./
if(mthdees'd’)
{

system(copy.cs);

system(padax8_cs);

systen(r2v_old);

system(bland_s1);

if(bin_state==’d’ || bin_states='c’)
{
systea(atat_siblend);

106

(RN

-

/e o/
/* Ratrieve the mean value for the scens. o/
/e o/
systen{mean_cs);
i2((2pt = fopea("/tmp/trac/ce_mean_data", "r"))esNULL)
{
print?("Exzor opening /tmp/trac/ca_mean_date!\n");
oxit(1);

}
tgets(string, 128, 2p1);
fclose(tpl);

1=7;

je=o;

temp = wtring(§);
while(tempi='\n")
{

termi[j) = seringls ¢ §);
Jejey;
temp = stringli ¢ J§);
)}
termi[§) = *\0’;
si_sean s atof(termi);
si_mean = (51 _mean » factor) ¢ si_mean;

i12(bin_statesw’p’)

{
strepy(bin_s1, “vthresh -i /tmp/trac/curr.blend_prev ");
strcat(bin_sl, "-o /tap/trac/tmp_scenel ");
sprintf(string, "-1 42 -v 1", si_mean);
strecat(bin_si, string);

strcpy(rbin_si, "vthresh -i /tmp/trac/curr_blend_prev ");
strcat(rbin_ss, "-o /tmp/trac/srev_bin_4stat ™);
sprintf(string, "-u Xf -v 1", si_mean);

strcat(rbis_s1, string);

system(bin_st);

system(rbin_s1);

systea(gsi_4stat);
}

for(ne0; n<2; ne+)
{
length = 24;
for(m=0; metarg_ num; me+)

{

/® o/
/% Retrieve the upper left corner x and y s/
/* coordinates of the bounding rectangle. »/
/e */
for(iw0; 1¢3; ies)
<

terni[i) = tru_catr(count - n){length + 1i];
)
termi[i) = *\o’;
I.tern = atoi(terml);
124413

for(J=0; j<3; jes)

p _
tern2(§) = tru_cntr{count - nl[length ¢ 1 ¢+ §1;

3}

term2[§) = *\0’;
y.ters ® atoi(term2);
y.tern ® §12 - y_term;
ioge§eyy

1o s/
/® Retrieve the width and height o/
/¢ of the bounding rectangle. o/
le ./
for(he0; k<2; kee)

{
tormi(k) = tru_catr{count -n) [length + 1 ¢ k ¢ 2);

)]

termifx] = *\0*;
width = stoli(termi);
k=ske+y;

for(1=0; 1€2; le¢)
{

torn2(1l) » tru_catricount -n) [length i +x +1 4];
3 S .
tern2{1] = '\0’;
height = atoi(term2);
length = length ¢ { ¢ x ¢+ 1 + 2);

}
/ /
/% Extract true binarized target o/
/e trom current scens. s/
/e /
i2(z_ tern!=0 &k y_term!=0 2k targ_num!=0)
{
for(isi; 1dn; i--)
{
strepy(extru_sl, "vestract -i /tmp/trac/tmp_scenei”);
strcat(extru_sl, " ~o /tmp/trac/tru.rect_si ");
sprintf(string, "-x %4 =y %4 ", z_term, y_term);
strcat(axtru_si, string);
sprint?(string, "-v %d -k Xd", width, height);
strcat(extru_al, string);
strcpy(intru_si, "vinsert -ii blank_320x499 *);
strcat(intru_sy, "-12 /tmp/trac/tru_rect.si ");
streat(intru_si, "-o /tmp/trac/tmp_scensl ");
sprintf(string, "-x Id -y Xd", x_term, y_term);
strcat{intru_si, string);
system(extru_si);
system(intru_si);
system(blend x_s1);
systen(csi_4stat);
}
/e ./
/% Extract true target from previous sceps. */
/ ===e/
tor(i=0; icn; i+¢)
{

strcpy(extru_tl, “vextract -i /tmp/trac/teapi_viff “);
strcat(extru_ti, "-o /tmp/trac/tru_rect_tl *);
sprintf(string, "~z %d =~y ¥4 ", x_term, y_term);
strcat(extru_tl, string);

108

}

sprintt(string, "-v 14 -k 14", width, loi;ht).
strcat(eztru_ti, string);

strcpy(intru_ti, “vinsert ~-il blank_320x499 *);
streat(intru_tl, "-12 /tmp/srac/sru_rect ti *);
strcat(intru tl, “-o /tmp/trac/vempi_vite ");
sprintf(string, *-x Id -~y %d", x_term, y_term);
strcat (intru_ti, string);
system(extru_t1);
system{intru_ti);
system(cti_dstat);
>
}
> Lo

1f(mthden’e’ || mthdes=’g’ || pthdes'g?)

{

systea(r2v_old);
systeas(blend_si);
system(blend_t1);

12(bin_statew=’b’ [[bin.states=’c’)
{
systea(stat_siblend);
systea(stat_tibland);

/e s/
/* Retrieve the mean value for the scens. »/
/» o/

systea(mean_cs);
12((2p3 = fopen(®/tmp/trac/cs_mean_data®, “r"))=sNULL)
{ .
print? ("Error opening /tap/trac/cs_sean.data!\n");
oxit(1);
)
tgets(string, 128, 2p1);
fclose(tpl);

{=7;

=0

temp » string{j);
while(temp!=’\n’)
{ .

terni(j] = string(i + J);
J=3+ 4
temp * stringfi + j);
)
termi[j) = ’\O’;
si_meas * atof(terml);
si_mean ®» (si_mean * factor) ¢ si_mean;

/e o/
/* Retrieve the mean value for the template. =/
/e /
systea(mean_ps);

12({2p2 = fopen(”/tmp/trac/pa_mean_data", "r"))=s=NULL)
{

109

printf ("Lrror opening /tmp/trac/ps_mean.datai\n");
exit(1);

)}

tgets(string, 128, 2p2);

fclose(2p2);

17
jeo
temp = stringlj);

, while(tempi=’\n’)

e e AN

tarm2(y] * stringli ¢ §;

'EEREY

temp = stringli ¢ J);
termaly] = *\0';

ti_mean = atof(term2);
ti_mean *= (tl_mean ¢ factor) ¢ ti_mean;

}

/e o/
/+ Binarize blended images using image average. o/
/ */
if(athdas’e’ Xk bin_states=’d’)

{

strcpy(bin_si, “vthresh -i /tmp/trac/curr_blend_prev “);
strcat(bin_si, "-o /tap/trac/tmp_scenel ");
spristf(string, "~1 ¢ -v 265", sl_mean);
strcat(bin_si, string);

strcpy(bin_t1, "vthresh -i /twp/trac/prev_blend_old *);
strcat(bin_ti, "~o /tmp/trac/tmp_templ ");
sprint?(string, "-1 %2 -v 265", ti_mean);
streat(bin_ti, string);

systea(bin_s1);

system(bin_ti1);

systea(sl_4stat);

system(ti_4stat);
}

/e .

/% Binarize dlended images using the »/

/* Cline binarizatticn technique. ./

le-==: /

if(athdwe’e’ &k bin_state==’c’)

{
strepy(bin_si, "vthresh -i /tmp/trac/curr_blend_prev ");
streat(bin_si, "-o /tmp/trac/bin_4and_si *);
sprintf(string, "-1 ¥f -v 255", si_mean);
strcat(bin_si, string);

strepy(bin_t1, "vthresh -i /tmp/trac/prev.blend old “);
streat(bin_ti, "-o /tmp/trac/bin_4and t1 ");
sprintf(string, "-1 %7 -v 255", ti_mean);
strecat(bin_t1, string); ‘

systea(bin_s1);
systen(bin_t1);
systean(dyni_s1);
systen(dyni_t1);
systen(and_si);
systea(and_ti);
system(si_4stat);
system(tl_4stat);

110

)

s/

Je
/e
/e

Binarize blended images using ¢/
1ine~by-line average. ./
»/

I»
it

}

(nthde=‘e’ a2 bin_statess’a’)

1ise_bin("/tap/trac/curr_blend_prev", "/tmp/trac/tmp_scenel”, factor, 255, 0);
line bin(*/tmp/trac/prev_blend_old", "/tap/trac/tmp_ templ”™, factor, 25§, 0);

system(sl_4stat);
system(tl _4Astat);

if(mthde='f"’)

{

/e /
/* Binarize blended images using image average. ¢/
/e /
12£(bin_states=’'d’) ’
{
strecpy(bin_si, “vthresh -4 /tmp/trac/curr_blend_prev *);
strcat(bin_sl, "-c /tmp/trac/tmp_scensi “);
spriptf(string, "-1 Xf -v 1", sl _mean);
streat(bin_sl, string);
strcpy(bin_ti, "vthresh ~i /tmp/trac/prev.blend_old ");
strcat(bin_tl, "-o /tmp/trac/tmp_tempi *);
sprintf(string, "~1 Xf -v 1", ti_mean);
strcat(bin_t1, string);
system(bin_s1);
system(bin_t1);
)
,- -
/% Binarize blended images using */
/* line-by-line average. ./
/* ./
else 12(bin_statesw’s’)
{

line_bin("/tmp/trac/curr_blend_prev", "/tmp/trac/tap_scenei”, factor, §, 0);
line_bin(“/tmp/trac/prev_blend_old”, "/tmp/trac/tmp_tempi®, factor, i, 0);
}

/o=-~ ./
/* Biparize blended images using the s/
/* Cline binarizattion techrique. o/
I -/
else 12(bin_statess’'c’)

{

strepy(bin_si, "vthresh -{ /tmp/trac/curr_blend_prev ");
streat(bin_sl, "-o /tmp/trac/bin_4and_s1 ");
sprintf(string, "-1 I? -v {", sl_mean);

strcat(bin_si, string);

strcpy(bin_t1, “vthresh -{ /tmp/trac/prev_blend_old ");
strcat(bin_ti, "-o /tmp/trac/bin_4and 1 ");
sprint?(string, "-1 %X¢ ~v 1, t1_mean);

strcat(bin ti, string);

systea(bin_s1);

systen(bin_t1);
systen(dyni_s1);

111

system(dyni_t1);
system(and_s1);
system(and_t1);

}
}

if(wthd=s'g’ &2 bin_statess’b’')

{

strcpy(bin_si, “vthresh -i /tmp/trac/curr_blemd_prev *);
strcat(bin_s1, "~o /twp/trac/tmp_scenel ");
sprintf(string, "1 Lf ~v 1", si_mean);

strcat(bin_si, string);

strepy(bin_ti, "vthresh -i /tmp/trac/prev_blend_old *);
streat(bin_ti, "~o /tup/trac/tmp_tempi ");
sprintf(string, "-1 ¢ -v 1", t{_mean);

streat(bin_ti, string);

strepy(rbin.si,
strcat(rbin_si,
sprintf (string,
streat(rbin sy,

strepy(rbin_t1,
streat(rbin tl,
sprintf (string,
streat(rbin_ti,

systea(bin_t1);
system(bin_s1);
systes(rbin_t1);
system(rbin_s1);

“vthresh -{ /tmp/trac/curr_blemd_prev ");
"-o /tap/trac/srev_bin_4stat ");
“-u Xf ~v 1", si_mean);

string);

"vthresb -i /tup/trac/prev_bland_old ");
"=o /tmp/trac/trev_bin_4stat ");

"=y I? =v 1", ti_mean);

string);

system{gt:_4stat);
system(gsl_4stat);

}

12(mthdserg!)
{

for(n=0; n<2; n++)

{

length = 24;

for(m=0; m<targ_ num; m++)

{

/®
/e
/®

Retrieve the upper left corner x and y s/
coordinates of the bounding rectangle. =/

/e

o/

for(i=0; 1<3; {+4)

{
}

termi[i) » tru_entr{count - n) [length ¢ 1);

termifi] = *\o’;
z_term = atoi(termi);

1w4+3;

2or(§=0; 3<3; Jee)
{

ters2(j) = tru_cotr{count - n)(length + § + §1;

}

term2(j] = '\o’;
y.term * atoi(term?);
y-term = 512 - y_term;
1mieqas,

fo-annn

--------------- vecrccccnaas /

112

\ ¢

/% Retrieve the width and height s/
/+ of the bounding rectangle. ./
A o/
tor(k=0; k<2; k++)

cerni[k) * tru_cntrlcount -n] [length +1 ¢k +2);

}

tormi[k] = ’\O*;
width = atoi(termi);
kwkeld;

2or(1=0; 1¢2; 1¢4)
verm2[1)~ ru_cntrlcount =n) [length ¢§ +k ¢l +4];
)
term2(1) = ’\0’;
height = atoi(tern2);

length = length ¢ 4 ¢ k ¢ 1 ¢ 23;
}

/e /
/+ Extract true binarized target /
/* from current scene. ./
/* o/
12(x.term!=0 &k y_term!=0 &2 targ_numi=0)
{
for(i=3; i>n; i--)
{
strepy{extru_si, "vextract -i /twp/trac/tmp_scene!”’
strcat(extru.sl, " =-o /tmp/trac/tru_rect_sl ");
sprintf(string, “-x %d -y Xd ", z.ters, y_term);
strcat(extru_sl, string);
sprintf(string, "-v %d -h ¥¢", width, beight);
strcat(extru_si, string);

strepy(intru.si, "vinsert -i1 blank 3202495 ");
strcat(intru_si, "-12 /tap/trac/tru_rect_si ");
streat(intru_si, "-o /tmp/trac/tmp_scenel ");
sprintf(string, "-x %d -y %d", x_term, y_term);
strcat(intru_si, string);

systen(extru.sl);
) system(intru_sl);

}

Je- o/

/* Extract true binarized target s/

/= from previous scens. ./

/e ./

for(i=0; i<n; ie+)

{
strepy(extru_tl, “vertract -1 /tmp/trac/tmwp_tempi ");
strcat(extru_tl, "-o /tmp/trac/tru_rect_tl ");
sprint?(string, "-x Xd -y Xd ", x_term, y_term);
strcat(extru_tl, string);
sprintf(string, "-w 1d ~b Xd", width, beight);
strcat(extru_tl, string);

strepy(iptru_tl, “vinsert -i1 blank_320x499 “);
strcat(istru_tl, "-42 /tmp/trac/tru_rect ti ");
streat(iptru_tl, "“-o /tmp/trac/tap_templ ");
sprintf(string, “~x ¥d -y Xd", z_term, y_term);
strcat(iptru.tl, string);

system(extru. ti);

113

L

system(intru.tl);
}
>
}
}
42(mthde='g’ || mthdwe'g’)
{
system(blend x_t1);
system(blend_x_81);
systes(ctl_4stat);
system(csi_4stat);
}

1¢(mthdwe’e’)

{
svap = rename("/tmp/trac/tup.scensl”, "/tup/trac/scensi. vit?");
12 (swapin0) e
{

b4

printf("File renaming operation failed!\n");

svap * rename("/tmp/trac/twp_templ”, "/twp/trac/tempi_viff");
if(swapi=0) ’
{

}
}
}

/* /
/* True target extraction algoritha. »/
/s .
if(mthdem’c?)
{
for(nm=0; n<2; ne+)
{
length = 24;
for(mw0; m<targ. num; me+)
{
/e o/
/* Retrieve the upper left corner x and y ¢/
/* coordinates of the bounding rectangle. ¢/

printf("File renaming operation failed!\n");

/ ./
for(iwQ; 1<3; ie¢)
{

termi1{i) » tru_cntricount - n) [length + i);
}

ternifi] = ’\0’;
z_term = atoi(termi);
i =414+,

2or(J=0; J<3; j§++)
{

tern2(j) » tru_cntr(count - n) [length « § + 3]
term2[§) = "\0';

y.ters = atoi(term2);
{1 =4 J * 1

/e o/
/% Retrieve the width and Beight »/
/* of the bounding rectangle. ./
[own=on -s/
for(xe0; X<2; k+¢)
{

114

[
)

terni[x] = tru_catricount -n) [leagth ¢ § ¢ kx « 2];
}
terni[k] = *\0*;
width » atoi(termi);
kek¢y;

for(l=0; 1€2; 1+¢)

{
tern2[1]) = tru.catrlcount ~n) [length ¢ ¢k +1 +4];

)}

term2(1) = ’'\0*;

height = atoi(term2);

lJength = langth ¢ { ¢ k ¢ 1 ¢ 23;

}

Iz : o/
/e Extract true target from current scens. ¢/
/e /
12(x_term!=0 &k y_term!=0 &2 targ_num!=0)

{

y.tera = 512 -~ y_term;

tor(i=i; i>n; 4--)

{
strcpy(extru_si, “vextract =i /tmp/trac/scensi_vif? *);
strcat(axtru_si, "~o /tmp/trac/tru_rect.si *);
sprintf(string, "-x %d -~y %d ", x_term, y_term);
strcat (extru_si, string);
sprintf(string, "-v Xd -h Xd", width, beight);
strcat(extru_si, string);

strcpy(intru_si, "vinsert ~i1 blank_320x499 ");
strcat{intru_si, “-12 /etmp/trac/tru_rect_si “);
strcat(intru_si, "-o /tmp/trac/scenei_vit? “);
sprintf(string, "-x %d -y 1d", x_term, y_term);
streat(intru_si, string);

system(extru_si);
systea(intru_si1);

system(csi_4stat);
)}
/e ./
/* Extract true target from previous scens. ®/
/e /
for(i=0; icm; i+e)
{

strcpy(extru_tl, "vextract -i /tmp/trac/tempi_vif? ");
strcat(extru_ti, "-o /tmp/trac/tru_rect_tl “);
sprintf(string, "-x Xd -y %d *, x_term, y_term);
strcat(extru_ti, string);

spriatt(string, “-v Xd -h Xd", width, height);
strcat(extru_tl, string);

strepy(intru_ti, “vinsert -i1 blank _320x499 ");
strcat(dntru_ti, "-12 /tmp/trac/tru_rect_ti ");
strcat(intru_ti, "-o /tmp/trac/templ_viff “);
sprintf(string, "-x %1d -y 1d", x_term, y_term);
strcat(intru_ti, string);

system(extru_t1);
system(intru_ti1);
systeam(cti_4stat);

)}

/e o/
/* Binarization algoritha. #/
/e e/

12((mthdes’s’ || mthd=e’b’) 2% bin_statei='s’)
{

system(cs_wtat);
system(ps_stat);
systea(nean_cs);
/e ./
/* Determine mean of the current_scens. ¢/
/* J4

12((2p4 » 2open(”/tap/trac/cs_mean_data”, “r%))ssNULL)
{
printf ("Error opaning /tmp/trac/cs_mean_data!\n");
~ exdt(1);
b4
fgeta(string, 128, fp4);
2clove(tpd);

1 7;
j=0
temp = stringljl;
while{(tesp!=’\n’)
{
term1[j) = stringli + 3):
J=3es
tomp = stringli + j);
termi[j) = °\O’;

si_mean = stof(teral);
si_mean * (si_mean * factor) ¢ si_mean;

I o/
/*» Determine the mean of the previous_scene. =/
/e ./
system(mean_ps);

12((2pE = fopen("/tmp/trac/ps_mean_data", “r"))==§uLl)
{

printf ("Error opening /twp/trac/ps_mean_data!\n");

exit(1);
Y
fgets(string, 128, tp5);
2close(2pB);
i=7;
=0
temp = stringljl;
while(temp!®’\n’)
term2[j) = string(i ¢ j];
J=3e1;
temp = stringli + §);

}

term2(j] = *\0';

ti_mean = atof(ters2);

ti_mean = (ti_mean * factor) ¢ ti_mear;

}
if(mthds='a’ &k bin_state==’b’)
{
/e -- /

/* Biparize using scens average. */

116

#

I ./

strcpy(bin_si, "vthresh ~i /tmp/trac/scenel_vif? *);
streat(bin_si, "~o /tmp/trac/tap_scenel “);
sprintf(string, "~1 I2 -v 255", si_meas);
streat(bin_si, string);

strepy(bin.tl, "vthresh =i /tap/trac/templ_vif? *);
streat(bin_tl, "o /tmp/trac/tap_tempi ");
sprint?(string, "-1 If =v 255", tl_mean);
strcat(bin_t1, string);

systen(bin_s1);

system(bin_t1);
/» ./
/* Biparize using the Cline bivarization techaique. ¢/
I o/
1f(mthd==’'a’ &%k bin_states='c’)

{
strcpy(bin_sl, “vthresh ~i /tmp/trac/scenel_vit? ");
strcat(bin_si, "-o /tmp/trac/bin_ 4and si *);
sprintf(string, "-1 X¢ -v 258", si_mean);
strcat(bin_si, string);

strepy(bin ti, "vthresh ~i /tmp/trac/templ_viff ");
strcat(bin_ti, "-o /tmp/trac/bin_4and t1 *);
sprintf(string, "-1 1f -v 265", ti_mean);
strcat(bin_t1, string);

systes(bin_s1);

system(bin_t1);

system(dyn2_s1);

systea(dyn2_t1);

system(and_s1);

systea(and_t1);
}

/ »/

/e Binarize using line-by-line averags. s/

/* /

if(mthd==’'a’ g2 bin_state=s'a’)

{
line_bin("/tmp/trac/scenel_vi?f", "/tup/trac/tmp_scanei”, factor, 255, 0);
line bin("/tap/trac/tempi_vift", "/tmp/trac/tmp_templ”, facter, 256, 0);

}

if(mthd==’a’)

{
system(tl_4stat);
system(si_4stat);

svap ® rename("/tmp/trac/tap.scenel”, "/tmp/trac/scenel_vife");
it (swap!=0)
{
print? ("File renaming operation failed!\n");
}

svap * rename(”/tmp/trac/tap_tempi", "/tmp/trac/templ_viff");
i2 (swap!=0)
{
printf(“File renaning operation failed!\n");
}
}

117

i2(wthdes'p’ 22 bin_states='d’)

{
/* o/
/% Biparize using scene average. ¢/
/e o/

strepy(bin_si, “vthresh =i /tap/trac/scemel_viff *);
strcat(bin_si, "-o /tmp/trac/tap_scenst *);
sprint?(string, "~1 If -v 1", si_sean);
strcat(bin_si, string);

strepy(bin_t1, “vthresh -i /tap/trac/tempi_vits *);
streat(bin_ti, "-o /tmp/trac/tmp_templ ");
sprintf(string, *-1 1f =v 1", ti_mean);
strecat(bin_ti, etring);

systea(bin_s1);

system(bin_t1);

system(sl_x_bin);

system(ti_x_bin);

system(cti_4stat);

system(csi_4stat);
}

/ /

/¢ Binarize using Cline binarization techniqus. ®/

I /

i2(wthd=e’b’ &2 bin_stateas’c’)

{
strepy(din_si, “vthresk -i /tmp/trac/scenel_viff ");
strcat{bin_si, "-o /tap/trac/bin_4and_si ");
sprintf(string, "-1 if -v 1", si_mean);
strcat(bin_si1, string);

strcpy(bin_ti, “vthresh -i /tmp/trac/templ_vif? *);
streat(bin_t1, "-o /tmp/trac/vin_4and_t1 ");
sprintf(string, -1 iIf -v 1", ti_mean);
strcat(bin_t1, string);

systea(bin_s1);
system(bin_t1);
system(dyn2_s1);
system(dyn2_t1);
systea(and_s1);
system(and_t1);
system(sl_x_bin);
system(ti_x_bin);
system{cti_4stat);
systam(csi_4stat);

}

/ /
/* Binarize using line-by-line average. s/
/e o/
12 (mthdee’d’ &g bin_statees’y’')

{

line_bin("/tap/trac/scenel _vite", "/tmp/trac/tap_scenei®, facter, 1, 0);
line_bin("/tmp/trac/tempi_viff", */tmp/trac/tmp_templ”, factor, 1, 0);

systam(si_x_bin);
system(ti_x_bin);
systam(ctl_4stat);
systen(csi_4stat);

L e T ./

/¢ Correlate target template with current scems. s/
/* o/
12(mthdt=’g’' &k wthdi=’d’)
{

systen(paddxs_cs);

systen(paddxzl_ps);
}

1f (uthdwm'd’) system(paddxs_ps);

system(extr s1);
system(extr t1);
system(stat stl);
system(stat. ssl);

system(padtl);

if(rune=0 2k display==‘y’)
{
/e *
/% Display template and scene sub-images. o/
v ' */
if(sizeim?g?)
{
systea(display_si);
)]
system(display_t1);
Tun * run ¢ 31;

}

A /
/* Pad sub-image with zeros for FFT. o/
/e ./
i2(sizemn’]1?)
{

system(pad266_s1):

system(pad256_t1);

olse i2(sizems’s’ || sizews’'a’)
{
systen(padéd_si1);
system(pade4_t1);

else if(sizems’m’)

{
systea(padi28_si);
systen(padi28_ti);

else

{

system(padfi2_si);

tupx = 268 ~ (z_templatel_size / 2);

tapy = 258 - (y.templatel_size / 2);
strepy(padbi2_ti, "vpad -{ /tmp/trac/sudb_templ);
strcat(pad5i2_t1, "-o /tap/trac/sub_templ_pad -r 512 -¢ 512 ");
sprintf(string, "~d 1d *, tmpy);
strcat(pad512_t1, string);

sprintf(string, "-¢ 1d - 0 -k 0", tmpx);
strcat(pad512_t1, string);

system(pad512_t1);

)

system(f92_81);
system(fft_t1);

119

system{(conjug.t1);

A /
/* The following concludes the correlatiosn ¢/
/+ for the full search scems optica. s/
/e J4
if(sizens’?’) .~

{

x.templatel = x_templatel - 3;
y.templates * y_templatel - 3;
z.templatel_size * x_templatel_size ¢ §;
y-templatei_size = y_templatel_size ¢ §;

12 (edgeri=’y?)
{

strepy(extr_ti,
strcat (extr_ti,
sprintf(string,
strcat{extr_ti,
sprint? (string,
strcat(eztr ti,
sprintt(string,
strcat(extr ti,
sprintf(string,
strcat(extr_ti,

if(edgerns’y’)
{

strepy(extr_ti,
streat(extr_t1,
strecat (extr_ti,
streat(extr ti,
sprint?(string,
strcat(exsr_t1,
sprint? (string,
streat(exsr ti,
sprint? (string,
strcat(extr_ti,
sprint?(string,
strcat(extr_ti,

“vextract =i /tmp/trac/templ_pad. 4x8 *);
“~o /tmp/trac/sudb_temp2 ");

*=x %d ", z_templatel);

string);

"ey %4 ¥, y.templatel);

string); :

“-w %d %, x_templatel_size);

string);

"=k 14", y_templatel_size);

string);

“vdrf -1 /tmp/trac/tempi_pad 4x8 -0 - *);
" «a1 0.35 ~a2 0.38 -9 9 ~t1 6 -t2 8 ~1 7 ");
* | vextract ~i - ");

“=c /tmp/trac/sub_temp2 ");

%=z 44 %, x_ templatel);

string);

%oy %d ", y.templatel);

string);

few %d ", x_templatel_size);

string);

*-h %d", y.templatel_size);

string);

system(extr_t1);

tmpz = 266 - (x_templatel_size / 2);

tupy = 256 - (y_templatel_size / 2);

strepy(pad5i2_tl, “vpad ~i /tap/trac/sub_tesmp2 ");
strcat(padsi2_ti, “-o /tmp/trac/sub_temp2_pad -r 512 -c 512 ");
sprintf(string, "~d 14 ", tmpy);

strecat(padbi2_ti, string);

sprint?(string, “~¢ 14 -j 0 ~k 0", tmpx);

strcat(padbi2_tl, string);

system(pad5i2_t1);

system(f£t_t2);

systea(corrtt);
12((2p1 » fopen("/tap/trac/tmp_ 3", “r"))esNyLL)
{
print?(“Error opaning /tmp/trac/tmp.3!\n");
exit(1);
}

fgets(string, 128, fp1);

120

aormt = 0;
tor (yy » 0; yy <= 6; ooyy) {
for (xx » O; xx ¢» @8; *oxx) {

12((facant(fps, 12", Scortemp[xx] [yy)))e=WULL)

{

printt (“Error resding from /tap/trac/vmp.3!\a"); .
exit(1); -
} .
sorwt = sormt ¢ (cortemp[xx]){yy) * cortemplxx)(yy)):

)
f2scant(tp1, "Yes”);

}

fclose(tpl);

system(corrts); -
12((2p1 » fopen(”/tup/trac/tmp_ 3", “r"))==NULL)
{

print? ("Exror opening /tmp/trac/tap_3!\n");
oxit(1);
}

tgeta(string, 128, fp1);

tor (yy = 0; yy <= 319; +oyy) {
for (xx = 0; xx <= 498; **xx) {

12((tscant(2p1, "X2", Scordatalxx] (yy]))==NULL)
{
printf(“Error reading from /tap/trac/tap.3!\s");
exit(1);
}
}
fecant (2p1, "Yeg");
)
fclose(fp1);

for (xx » 0; xx <= §; *+ x3) {
ztar{xx]) = 0;
ytar{zx) = 0;
magerrixz] = 0.22;

}

pointer = 0;

tapx = 0;
tmpy = 0;
percent = 100.00;
for (xx = 0; xx ¢m 492; eexx) {
for (yy = 0; yy <= 312; ++yy) {
holder = 0.00;
holder2 = 0.00;
cownt = O;
normec = 0.00;
xcen = xx ¢ J;
ycen ® yy ¢ 3;

if(cordatalxcen] [ycen] > (cortemp{3)(3] » 0.25))
{

for (cxx ® 0; exx <= 6; ++cxx) {
tor (cyy = 0; cyy <» 6; ++cyy) (
txx » cxx ¢ xx;
tyy © cyy ¢ yY:
if(cordata{txx]) (tyy) > cordats{zcen){ycen])

121

{

cownt * §;
)}
sormc ® normc + {cerdataltxx) [tyy) » cordetaltxx][tyy));
normi = cordata[txx])(tyyl:
sora2 = cortemplcxx][cyyl:
porm$ = cortesp(8](3);
fact ® §;
if(cxzwe3) fact = fact ¢ B;
i1f((cxzwe2) || (cxxenq)) fact = fact » 4;
42((cxxes1) || (cxx»wB)) fact » fact » 2;
if(cyy»=3) fact » fact ¢ 9;
12((cyy®=2) 1] (cyy==4)) fact = fact ¢ 4;
12((cyys=1) || (cyy==B)) fact = fact ¢ 2;
12((cxx=e3) &k (cyy==3)) fact = fact ¢ 7;

bolder2 » holder2 ¢+ (((float)fact) * ((moramil - morm2) * (morm! - morm2)));
}

)}
bolder = ((sqrt((double)bolder2)) / ((double)nora3));

i2((cownt==0) &k (bolder < percent))
<
porml = ((float)(zcen - permx));
sorm2 = ((f2loat)(ycen - permy));
dist = sqrt((double) ((normi » pormi) ¢ (norm2 * morm2)));
i2(dist < BO)
{
tmpx = xx ¢ 3;
tapy = yy + 3;
parcent = holder;
)
>

if?(cownt == 0)
{
dist = 0.00;
pormalt = sqrt((double)normt);
normalc = sqrt((double)norme);
tor (cxx = 0; cxx <» ¢; *+*cxx) {
for (cyy = 0; cyy <=8; ++cyy) {
txx ® cxx *xx;
Yy ® €Yy Yy
pormall = ((double)cordata[txx][tyy)) / normalc;
normal2? » ((double)cortemplcxx] [cyy)) / normalt;
norsall = pormall - normal2;
dist » dist ¢+ (normal3 » normal3);
}
}
dist = sqrt(dist);

i2(dist < magerr(pointer])
{
xtar[pointer) » xx ¢ 3;
ytar([pointer) = yy ¢ 3;
magerr [pointer] = dist;
pointer = 0;
for (cxx = 1; cxx <= 9; +ecxx) {
1f(magerr(cxx] > magerr(pointer])
{

peinter = cxx;
}
}
}

122

RY

}
}

norsl ® permx - tEpz;

BOTHZ * permy ~ tmEpY;

normd = (norml * norml) ¢ (morm2 ¢ morm2);
daist = sqrt ((doudle)normd);

for (xx =0; xx <= 9; ¢¢ xx) {
pormi » permx - xtar(xx];
soru2 * permy - ytar(xx);.
porm3 = (pormi * morml) ¢ (norm2 ¢ morm2);
pormall = sqrt ((double)pormd);
12((pormall ¢ dist) &% (normall < 30))
{
tapx » xtar{xx];
tapy = ytar(xz);
dist = normall;
percent *» 50.0;
)}
)}

if(empx > 2 82 ¢ 5> 2)
{
z_coord » tmpx ¢ 150;
y.coord = tmpy ¢ 40;

else
{
z.coord = permx ¢ 150;
y.coord » permy ¢ 40;
perceat = 100.00;
>
-}

/» o/
/¢ The following is for all but full o/
/® field of viev for search scens. ./
/ ./
i2(size!n’t?)
{

system(multi);

systea(inv_22t);

/ o/
/* Quadrant £1ip the corralation plane. o/
/* /
if(nige==’1’)
{

system(q_£11p128);

slse 1f(sizems=’g’ || sizems'a’)

{
system(q_214p32);

else

{ .
system(q_213p64);

123

system(c2real);
system{(Cstat);

system(corr_sax);
1£((2p1 » fopen("/tap/trac/maz_data”, “r"))ssNULL)
{

printf ("Error opaning /tmp/trac/max_datai\n®);
exit(0);

)

fgets(string, 128, fp1);

fclose(2pl);

1s9;

5= 0;

temp = string(l);

while(tempi®’a’)

{

Caax[a) = temp; o oo

nene¢d;
temp = string{l ¢+ al:

Caax{m) » '\0’;

system(corr_min);
i2((fp1 = fopen("/tmp/trac/min_data”, "r*))=eNULL)
{

printf(“Error opening /tmp/trac/min_data!\n");
exit(0);

2gets(string, 128, fp1);
fclose(pl);

1s9;

== 0;

temp = string(l);
while(temp!=’a?’)

{

Cuinln] = temp;
LI LA H
temp = string(l + n);

Cainim] = *\0’;

system(corr_mean);
12((2p1 = topen("/tmp/trac/mean_data”, “r"))==NULL)
{

print2("Error opening /tmp/trac/mean_data!\n");
exit(0);
}
fgets(string, 128, fp1);
2close(2pl);
l1=7;
n=0;
tenp » string(l):
vhile(tempi=’\n"’)
{
Cnean(n) » temp;
LECE LA
temp = string{l + nl;

Caean(m] = *"\0';

system(corr_var);
12((2p1 = topen("/tmp/trac/var _data", “r"))=sNULL)
{
print? ("Error opening /tmp/trac/var_data'\n");
axit(0);

124

}
fgeta(string, 128, 2p1);
fclose(2pl);
11y
s®0;
tomp = string(1);
wvhile(tempi='\n’)
{
Cvarin] = temp;
men¢i;
temp = string[) + ul;

Cvar[a) = *\0’;

system{corr_stdev); .
12((2p1 = fopen(”/tmp/trac/stdev_data”, "r"))=eNULL)
{

printf("Error opening /tmp/trac/stdev_data!\n");
oxit(0);
}
fgets(string, 128, 2p1);
fclose(fp1);
1= 1%;
n=0;
temp = stringl); 8
wbile(temp!=’\n’)
{
Cstdevin) = temp;
aen¢];
temp = string{l ¢ u);

Cstdev[m] = *\0';

system(byte_f1ip);

systen(stat_pk);

/e ./
/* Read correlation information generated by KHORDS. =/
/* /

42((2p1 = fopen("/tmp/trac/peak_coords_1", “r"))=aNULL}
{

printf("Error opening /tmp/trac/peak_coords_1!\z");
exit(1);

) .
jok=le=0;

for(i=0; 3<12; ie+) <fgets(string, 128, 2pl1);
fclose(2pi);

temp = stringloftset ¢ §1;
while(temp!='(*)
{

=3y

temp * string(offset + §);

/e .
/* Retrieve x- correlation peakx coordinate. s/
/e o/
J=i*y

temp = string{offset + j];
vhile(temp!s=’,?)
{
terni(x] = temp;
Je=3+
ek <+

125

temp = stringlofteet ¢ §];

4
ternt(k] = '\0';

/e

/¢ Retrieve y- correlatico psak coordimats.

o/
o/

/e
IEEEET

temp = stringlottset ¢ J;
while(tempte’)’)

terna(l] = temp;

18] ¢1;

Jeye g

temp » stringloffset ¢ jl;

)
term2[1] = '\0*;

P

/e

/* Compute nev target location cocrdinates.

o/

/e
x.peak » atoi(terml);
y.peak # atoi(tern2);
for(m=0; m<5; m++) termi[m) = '0°;
for(m=0; m<5; m+¢) term2(m] = '0’;

/wxt_coord = ((double) x_coord);*/
/ey2_coord = ((double) y_coord);*/

o/

x_coord = x_coord + (x_peak - (pad_size / 2)):
y._coord = y_coord ¢ (y_peak - (pad_size / 2));

2 _temp ¢ ((double) pad_size / 2.0);

xf_coord = xf_coord + ((double) x_peak - £ temp):
y2._coord ® yf_coord + ((double) y_peak - £ temp);

}

/e /
/* Generate adaptive template dimensions and ./
/* location for correlation. ./
/- o/

it(sizen=’a’ || size==’'?’)
{
xedge = x_coord - 200;
yodge = y_coord ~ 90;
if(xedge < 0)
{
xedge * O;
}

if(xedge > 398)
{

Zedge = 398;
i2(yedge < 0)
{

yedge = O;
}

i2(yedge > 220)
{
yodge » 220;

o/

strepy(extr_win, “vertract -i /tmp/trac/scenel_vift -o - ");
sprintf(string, "~z Xd -y %d -v 100 -b 100", redgs, yedge);

strcat(extr_vwin, string);
streat(extr_win, " | viff2mat =i - ")

120

strcat(extr vin, "-o /tmp/trac/tmp_i 3§ 1 b 0 %);
strcat(extr win, =4 0 =2 0 *);

system(extr vin);

12((2p1 = fopen("/tmp/trac/swp_ 3", “r"))==¥ULL)
{
printf (“Error opening /tap/trac/tmp_ii\n");
exit(1);
}

tgete(string, 128, £p1);

tor (yy = 0; yy <= 99; soyy) {
tor (xx = 0; xx <= 99; ++xx) {

12((gscant(2pi, "X¢", kxy[xx](yy]))==wULL)
{
printf("Error reading from /tmp/trac/tmp_1!\n");
exit(1);
)
}
2scan? (2ps, "Xos");
}
fclose(fpl);

tmpx » x_coord - 150 - zedgs;
tmpy = y.coord - 40 - yedgs;

/* ./
/+ Check to see 42 current sslected pixel is part s/
/% of a target. Y
/e ./

12 (xy(tmpx] [tmpy] <= 70)
{

comt = 0;

al = tmpy;

bl = tmpx;

cl = tmpy;

di = tmpx;

while(comnt == 0)

{
al = al ~ 3;
b1 = bl + §;
cl1 = cl <+
dy = d1 - 1;
if(al € 0) a1l = 0O;
i2(bi > 100) b1 = 300;
i2(ci > 100) c1 = 100;
412(d1 < 0) 41 = 0;

for(xx = d1; xx <* bl; e+xx) {
12 (xy(xx] (a1] >= 71) .
{

cownt = §;
12 (xy[xx] [a1) >= (xy[tmpx]{tmpy] + 1))
{
tmpr = xx;
tmpy ® al;
}
}
)

127

tor(yy = ai; yy <= ci; *+yy) {
i2(zylo1l[yy] >= T1)
{

cownt = 1;
12(zy o) [yy) >= (xy(tmpx]) [tmpy] ¢ 1))
{

tmpz = bi;

wmpy ® ¥Yi

}
}

for(xx = d1; xx <= b}; ¢exx) {
12 (xy [xx] (c1] >= 71)
{
cownt = §;
12 (xy(xx) [c1) >= (xy[tmpx] [tupy) ¢ 1))
{
tmpx = xx;
tupy = ci;
}
)}
}

tor(yy = al; yy <= ci; seyy) {
1t(xy(d1) [yy) >= 71)
{

cosnt & 1;
12(xy{d1) {yy) >= (xy[tmpx, (tmpy) ¢ 1))
{
tmpx = di;
tapy = ¥Yi
)
}

3
12((ag==0) 2k (biew99)ak(c1==99) kk (d1>=0))
{

tRpX * permx;
tRpy ® permy;
}

}
}
/e /
/* Find bounding box of target. o/
/e /
ai = tapy - 1;
a2 = 0;
b1 = twpx ¢ 1;
b2 = 0;
cl = tmpy + 1;
c2 = 0;
41 = tmpx - 1;
42 = 0;
while(a2e=0 {| b2w=0 || c2em0 || d2%=0)
{

i£(a2 == 0)

{

al = al - §;

)}

a2 = 0;

cownt = 0;

128

\7

if(al < 0)
{

al = O;

[VELIS H
)
for(xx » 41; xx ¢» b} ++xx) {

12 (xy[xx] [a1] <= TO)

{

cownt s cowvnt ¢ 1;

} -
) » . -
check = (commt / (b1 = 41)); '
{f(check >= 0.9)
{

a2 = 3; S
}

12(b2 == 0)
{

)}

b2 * 0;

cownt = O;

iz(v1 > 100)

{
b1 = 100;
b2 = 1;

}

tor(yy = ai; yy <= ci; ++yy) {
12(xyb1) lyy) <= 700
{

bl = bl ¢ };

cownt = cownt + 1;

}
}
check = (cownt / (ci1 = a1));
if(check >= 0.9)
{

b2 = 1;
}

i12(c2 »= 0)
{
cl = cl e+ ;
}
¢c2 = 0;
cownt = 0;
i2(c1 > 100)
{
cl = 100;
c2 = 1;
)
for(zxx = di; xx <= b1; +exx) {
if (xy[xx]) [c1) <= 70)
{
cownt = cownt 4 1;
}
)
check = (comnt / (b1 - 41));
42 (check >= 0.9)

{
c2 = 3;
}
412(42 == 0)
{

129

L4 g

di = 41 - §;

3} .

42 = 0;

comt = 0;

i2(d1 < 0)

{
41 = 0;
a2 = §;

)}

for(yy » a1; yy <= ¢1; +oyy) {
42 (xy[d1] {yy) <= 70)
{

cownt ®» comnt ¢ 1;

}
)}
check = (cownt / (c1 - al));
12 (check >» 0.9)
{

da e 31;
b4

}

x.coord = ((b1 ¢ d1) / 2) ¢ xedge;
y.coord = ((c1 ¢ al) / 2) + yedge;
permx * x_coord;
permy * y_coord;

z_templatel _size = b1 =~ d1;
y.templatel _size = cl =~ al;
i2(x_templatel_size > 64)
{

z_tamplatel_size » 64;

}
12(y.templatel_size > 64)
{

y-templatel_size » 64;

z_value = x_coord;
y.value = y_coord;
xf_coord = ({double) (bl ¢ di) / 2) + xedgs;
yf_coord » ({doudle) (ci + al) / 2) ¢ yedge;
xf_catr = xf_coord;
yf_catr = yf_coord;

x_coord = 160 ¢ x_coord;
y.coord = 40 ¢+ y_coord;
xf_coord = 150.0 ¢ xf_coord;
yf_coord » 40.0 + yf_coord;

/

}
o/
/» Compute upper left x- and y- pixel coordinates ¢/
/* for subimages templatel, scensi, snd sub-display. */
./

/e
x_tewplatel = x_coord - (x_templatel_size / 2);
y-templatel = y_coord - (y_templatel_size / 2);
x.scenel = x_coord ~ (x_scensi_size / 2);
y.scenel » y_coord ~ (y_scenel_size / 2);
if(sizemwnre’)

{

z.scens] = 150;

130

y.scenel = 40;
}
z_display = 150;
y.display = 40;
z.display_size ® 499;
y.display_size = 320;

12 (edgerti=’y’)
<

strepy(extr.si,
strcat(extr.si,
sprintf (string,
streat(extr.sl,
sprintf (string,
strcat(extr.si,

sprint?(string,
strcat(extr.sl,

strepy(eztr.ti,
strecat(extr. ti,
sprint?(string,
streat(extr ti,
sprint? (string,
strcat{extr ti,
sprintf(string,
strcat(extr. ti,
sprintt(string,
strcat(extr ti,

}

12(edger=a’y?’)

{
strepy (extr_si,
strcat{extr_si,
strcat{extr _si,
strcat(extr _si,
sprintf(string,
strcat(extr_si,
sprintf(string,
strcat(extr _si,
sprints(string,
strcat{extr si,

strepy(extr _ti,
strcat{extr _ti,
strcat(extr_ti,
strcat(extr_t1,
sprint?(string,
strcat{extr_t1,
sprint?(string,
strecat(extr ti,
sprint?(string,
strcat(extr_ti,
sprintf(string,
strcat{axer _ti,

}

“yextract ~i /tmp/trac/scenei_pad 4x8 *);
“=p /tmp/trac/sub.scensl ");

“ex %4 =y %4 ", x.scenel, y.scemel);
string);

ney 14 ", x_scenel_size);

string);

“=h 1d”, y_scenel_size);

string);

“vextract ~i /tmp/trac/templ_pad 4x8 ");
"=p /tmp/trac/sud_templ ");

"ex %4 ", z_templatel);

string);

"ey %d %, y.templatel);

string);

%oy %d ", x_templateli_size);

string);

“ep %d", y.templatel_size);

string);

“ydr? -i /tmp/trac/scenel_pad 4x8 =0 - ");
“enl 0.36 =22 0.35 ~w § -t1 6 ~t2 8 -1 7 ");
“ | vextract ~i - ");

“~o /tmp/trac/sub_scenel ");

"ex %d -y %d *, z.scCensil, y_scenel);
string);

"oy ¥d ", x.scenel_size);

string);

"=k 14", y_scensi_size);

string);

"ydr? -i /tmp/trac/tempi_pad_4x8 =o - ");
"eal 0.35 ~a2 0.35 ~v § ~t1 6 -2 8 =1 7 *);
* | vextract =i - ");

"-0 /tmp/trac/sub_templ ");

"=z X4 ", x_templatel);

string);

"~y ¥d ", y_templatel);

string);

“ep Id ", x_templatel_size):

string);

"-h 1d”, y_templatel_size):

string);

strcpy(extr_sub, "vextract -i /tmp/trac/pad_4x8.displ *);

strcat(extr_sub, "-o /tmp/trac/sub_displ_data

n);

sprintf(string, "-x %d ", x_display);
strcat(extr_sud, string);
sprintf(string, “-y %4 ", y.display);
strcat(extr_sub, string);

131

sprinte (string, “-v 14 *, z_display_size);
strcat(extr sudb, string);

sprint?(string, “-b 14", y.display_sige);
strcat(extr_sub, string);

system(extr_sud);
system(extr_cross);

comnt » 0;
xpat = O;
ypot = O;
xzlen ® BO;
ylen = BO;
tmpx = x_coord - 150; . .
tapy = y.coord - &0; e L2
i2{tmpx < 2B) T - USRS
{
xpat = 25 - tmpx;
zlen = B0 - xpnt;
cownt = };
}
i2(tmpx > 474)
{
Xlen = 50 - 499 ¢ tap:;
cownt = 1. : . . -
}
it (empy < 25)
{

ypot = 25 - tapy;
ylen = 50 - ypnt;
cownt * 1;

}

if(tapy > 295)

{

ylen = BO - 320 ¢ tmpy:
cowmnt = 1;

}

if(cowntmsy)

{
strcpy(cut_cross, "vextract -i /tmp/trac/cross_data ");
strcat(cut_cross, "-o /tmp/trac/cross_dat *);
sprint? (string, "-x %4 ", xpot);
strcat(cut.cross, string);
sprint?(string, "~y ¥4 “, ypot);
streat{cut_cross, string);
sprint?(string, "-¥ 1d ", zlen);
strcat{cut_cross, string);
sprintf (string, "~k 1d ", ylan);
strcat(cut_cross, striag);

system(cut_cross);

}

xedge = tmpx - 25 ¢ xpot;

yedge = tmpy = 26 ¢ ypot;

if(cownt == 1)

{
sprint?(string, “vpad -i /tmp/trac/cross_dst);
strcpy(pad_cross, string);
strcat(pad_cross, “-o /tmp/trac/crossbair -r 320 -c 499 “);
sprint?(string, "-d 14 ", yedge);
strcat(pad_cross, string);
sprintf(string, "-e %3¢ - 0 -k 0 ", xedge);
strcat(pad_cross, string);

132

)
slse

{
sprintf(string, “vpad -i /tmp/trac/cross_dats *);
strepy(pad_ croes, string);

strcat(pad_croes, "o /tmp/trac/crosshair -r 320 -c 499);

sprinte(string, "4 14 *, yedge);
strcat(pad_croes, string);

sprintf(string, "-s ¥d = 0 =~k 0 *, xedge);
streat(pad_cross, string);

systen(pad_croes);
strcpy(add_croes, “vadd -i1 /tmp/trac/sub_displ.dats *);

strcat(add_cross, "-i2 /tmp/trac/crossbair *);
streat(add_cross, “~o /tmp/trac/sud_displ_comv®);

system(add_cross);
systea(byte_sub);
/e /
/% Compute and display statistical information above e/
/® the on~going adaptive correlaticn process. o/
/e ./

for(m=0; m¢6; m++) term2[m] = tru_cntr{count][nl;
tern2m] « *°\0';
tr.info = atoi(tern2);

it(targ_num!=0)

for(imQ; i<targ.num; i+¢)

{
/e /
/® Retrieve the x- coordinate »/
/e of target locations. o/
/e o/
=0

temp = tru_entr{count] {ml;
while(tempte’,’)
{
torni[j) = temp;
j=3
temp = tru_cntricount)(m + §1;
) .
termi[j) = "\0’;
z_numdb * atoi(termi);
z2_numb = ((double) x_numd - 0.0);

Jeiu;
/ s/
/* Retrieve the y- coordinate »/
/* of target locations. o/
/e /
for(kwd; k<7; kee)
{
tern2[k] » tru_cntr{count)m + § * x);
)

term2{k) = '\0’;

y.ousb = atoi(term2);

y2_numdb = ((doubls) y_numb - 0.0);
Reme ek 21

}

system(cs_paddx8);
systea(ps_paddx8);

133

it (indexzew0)

{
priate("\n");
system(clr_scr);

princt(® ")
prints("-=- CORRELATION STATISTICS:

-);

printe ("Bun_number = Xs , ", run.num);
print?("Tergst lhmber ® Id ---", targ.num);

printe(® \n");

printf("Tracking Nethod: 1-37.378%, otrd);
printf("Iait Vindow BSixe: 1-32.32s\n", stri);
print?("Thresdold Techaique: X-37.37s%, str2);
print?("Threshold factor: %-.2¢ *, facter);
printf("above computed threshold\a\n");

print?("Targ Correlate “);

print?(” True Track Err Path");

printf(* Correlation\n");

printf(“Range Targ Cotr Targ.Catr™);
printf(* Error (Degree) Error\n“);

printe ("

");

printe(~

u);

printe(®
printf(t===cec==\n");

index = 15;
}

svap = repane("/twp/trac/ready_4displ”,

it (swap?=0)
{

N

“/tmp/trac/FOV_displ™);

print2("File renaming operation #1 failed!\n");

}
}
else 12(targ_pume=0)
{

svap = rename("/tmp/trac/ready_4displ”,

iz (swapi=0)
{ .

"/tamp/trac/FOV_displ™);

printf("File renaming operation $2 failed!\n");

}

i2(index==0)

{
print2("\n");
system(clr_scr);

printe(® \z");
print?("Targ Correlate\n");
printf ("Range Targ.Cotr\s");
prints (" \n");
index = 19;
}
}

/-
/* Display correlated target coordinates.

o/

/-

o/

134

12 (targ aum==0 || (x.terw==0 82 y_terwe=0))

{
priate("16429.12,%6.12°, tr_info, xf_peak, yf_peak);
printe("\n");
index = index - 1;
)
eloe
{
/e /

/* F1ip y._term to adjust for different coordinate ¢/
/% system and reduce mew targst coordinates from o/
/® & refersnce of 400z800 to 3202499. s/
/ ./
y.aumb = 512 ~ y_numb;

z_peak = z_coord - 180;

y.posk ® y_coord - 40;

yf.numb = §512.0 - yf_nuab;
zf_peak = xf_coord -~ 150.0;
yI_pesak = y2 _coord - 40.0;

/ o/
/% Calculate magnitude of tracking ervor. s/
/ o/

fvaluel = ((xf_peak - xf_numb) » (xf_peak - xf_pumb));
fvalue2 = ((yf_peak -~ yf_numb) * (yf_peak - yf_numb));
result ® sqrt(fvaluel ¢ fvaluel);

error * result;

i2(sizet=’t’)
{

percant = 0.0;
b4

/ o/
/+ Determine the direction of the track srror. */
/ .
fvaluel = xf_peak ~ xf_cntr;
fvalue2 = y2_peak - yf_entr;

12((xf_numb - xf_peak)>0.0 22 (yf_numb - yf_peak)<0.0)
{

2valuel = xf_pumb - xf_peak;

fvalue2 ® y?_peak - yZ_numb;

result = atan2(fvalue2, fvaluel);

angle ®» ~180.0 + 180.0 » (result / pie);

else 12((xf _pumdb - xf_peak)>0.0 &2 (yf_numb - yf_peak)>0.0)
{

fvaluel ® zf_numd - xf_peak;

fvalue2 = y?_numd - y?_peak;

result = atan2(fvalue2, fvaluel);

angle = 180.0 - 180.0 » (result / pie);

else if((xf numd - xf_peak)<0.0 &k (yf_numb - y?_peak)<0.0)
{
fvaluel = xf_peak -~ xf_numd;
fvalue2 = y?_peak - yf_numb;
result = atan2(fvalue2, fvaluel);
angle = ~180.0 » (result / pie);
}
else 12((xf _numb - xf_peak)<0.0 &2 (yf_numb - yf_peak)>0.0)

{
fvaluel = xf _peak - xf_numd,

fvaluel = yf_ausb - yf_peak;

result ® atan2(fvalue2, fvaluel);

angle = 180.0 » (result / pie);
}
alse i2((xf_oumb - xf_peak)>0.0) angle =
olse 12{(xf _pumb - xf_peak)<0.0) angle =
else if((y2_numdb - yf_peak)>0.0) angle = 90.
else 42((yf_numb - y?_peak)<0.0) angle =
else angle = $95.9;

/* s/
/+ Display correlaticn statistics to scresn. o/
/ o/

print?(*X54%8.12,%5.1¢2%, tr_info, xf_peak, yf_peak);
print2("X8.1¢,%6.12%8.2¢", x?_numb, yZ_mumb, errer);
printf(“X9.12%9.3f\n", angls, percesnt);

.index = index - 3;

/ 74

/% Racord correlation summary to a file. o/

/e o/

if(timeven0)

{
fprinte(2p3,");
£print?(2p3,"em===cece- CORRELATION STATISTICS SUMOUR®);
2printf(£p3,"Y ")
2print? (£p3,"~-orameenees\n\n");
2print?(2p3, "Tracking Method: 1-40.408", str0);
2print? (1p3,"W¥indovw Size: 1-40.40s\2", stri);
2print?(2p3,"Binarization Technique: %-40.408", 3tr2);
2print?(£p3,”"Run Bumber: %-3.3s\n", Tun_num);
2print?(2p3,"Threshold Factor: 1-40.2¢", tactor);

2print?(2p3, "Target Number: %d\n\n", targ_pum);
2print2(2p3,"Data Format:\n\n");
2printf(ep3, "RANGE, X-PEAK CORR, Y-PEAK CORR, ");

2printf{fp3, "X-TRUE, Y-TRUE, TRACK ERROR,");
2print?(2p3, “ERROR PATE (DEGREES), CORRELATION ERROR\n\n");

fprinte(1p3,” ")
fprint2(2p3,” ");
tprints(£p3,” \n\zn");

times = times ¢+ 1;

}

/ ./
/® VWrite computed statistics to file. o/
/» o/

fprint? (2£p3, "X54%X8.12X8.17", tr_info, xf_peak, yf{_peak);
fprintf(2p3, "X8.12%8.12", x?_numd, y?_numbd);
2print?(fp3, "18.27X9.12X9.37\n", error, angle , percent);

tprint?(2p6, “XBdY18.27\n", tr_info, error);
tprintf (2p7, "154%9d4%X9d\n", tr_info, x_peaX, y_peak);
tprintf(2p8, "%d ", tr_info);
tor (xx =0; xx <» 9; ++ xx) {
dist = 20.0;

for(yy » 0; yy <= 9; ++yy) {
12((holdx(yy) t= 0) a2 (holdy(yy) '~ O))

136

\W

< et s

sormi = ((float)(ztar(xx] - bolax(yyl)); - R

pora2 * ((flocat)(ytar(xx] - boldylyy))):
holder = sqrt((doudble)((norml » normi) ¢ (norm2 = nr-:))).
12(holder < dist) dist = holder;

} . . ro.

)} .

12((ztar(zx] 1o 0) & (ytar{xx) 1= 0) 88 (dist <= 16.0)) {
tprint?(2ps, " 1d,%¢ ", ztar[xx], ytar{xx});

)

¥
tprintf(2p8, "\n");

22lush(2p3); A .
221ush(2pe); e ST
£21ush(2pT); oL T
22ush(£p8);

for (xx =0; xx <= 9; *¢ xx) {
boldx(xx) = ztar(zx];
boldyl[xx] = ytar(zxx]);

}

3}
count = count ¢ 1;

svap * resame("/tmp/trac/previcus_scene”, "/tmp/trac/old_scepe®);
i (swap!=0)
{
printf("File renaming operation 83 failed!\n");
axit(l);
)
svaperename ("/tmp/trac/current_scens”, "/tmp/trac/previous_scens");
12 (swap!=0)
{

print?("File renaming operation 84 failed!\n");
exit(1);
)}

ssrepy(displ_tile, plotoame);

sprintf(terml, "T1_YdXdX4", digiti, digit2, digitd);
strcat(displ_24ile, terml);

strepy(saveimg, "cp /tap/trac/sudb_templ ");
sprintf(term3, "Ys", displ_file);

strcat(saveing, torn3);

system(saveing) ;

it(sizete’s’)
{
strcpy(displ_file, plotname);
sprintf(termi, *S3_%d1dXd", digiti, digit2, digit3);
streat(displ 2ile, termi);
strepy(saveing, "cp /tap/trac/sub_scenel®™);
sprinotf(termd, * 18", displ_file);
strcat(saveing, term3d);
system(saveing);

digitd = digitld ¢+ 1;
12(digit3==10)
{

digitd = 0;

ik

by

digit2 = digit2 ¢ 3; e e

}
12(a1givaen10)
{
digit2 = 0;
aigitl = 3;
)

/ o/
/¢ Set flag to trigger the display of the ¢/
/+ correlator’'s options menu. s/
/ o/
12(cyclem=0)

{

i2((2p1 » topen("/tap/trac/start2_flag”, “v"))e=NULL)
{

print? (*Error opening /tmp/trac/start2_flag!\e");
eaxit(1);

}

tputc(on, 2pl);

tclose(2pl);

cycle = cycle ¢+ 1;

}
12((2p2 = fopen(“/tmp/trac/option_flag", "r"))=sNULL)
{ .

printt ("Exror opsning /tmp/trac/option_flag!\n");
axit(1);

}

opt_flag = fgetc(Lp2);

fclone(2p2);

/* o/
/* Reset opt_flag and detarmine the option selected. s/
/ o/
i2(opt._flag»=on)

{

42((2p4 = fopen("/tmp/trac/option_flag", "v"))=s=WULL)
{
printf("Exror opening /tmp/trac/option.flag!\n");
oxit(1);
}
tputc(of?, 2p4);
2close(tpd);

1!((!;5 = fopan("/tup/trac/option_info", “r"))==yULL)
{

printf(“Exror opening /tmp/trac/option_info!\n");

exit(1);
}
opt = tgetc(Lps);
/ o/
/% Annotate change in bivarization factor. s/
/e s/
if(opte=’y’)
{

fgets(string, 128, 2pE);
fgets(string, 128, 1p5);
Zactor = atof(string);
12 (targ.num!=0)

{

2Pr1ntf(1p3."oo.o-.ooo.oo.too-oo-on Chan”);
tprint?(2p3,"ges in binarization threshold");
2print2(2p3,". Nev threshold facror: “);

138

fprintt (£p3,~ Id \n\n", facter);
)

}
fclose(2ph);

;: Annotate change in template and scens sizes. ;;

A opren1s 11 oproarar 11 optesior) M
¢ 12 (opte='1")
¢ sige = '1’;

y.templatel_size = 40; -

x_templatel_size » &4;
y.scenel_size = 120;
X_scenel_size = 192;
pad_size = 25§;
if(targ_num!=0)

2printf (2p3,"e » Chang");
2printf(2p3,"e in windov size. Nev windov ");
2print2(2p3,"size in: Large (TemplatewSdx");
2print? (2p3,"%40, Scene=192x120) seesssssss®);
2print? (2p3,"sssssssssssesssv\p\n");
)
}

if(optem’s’)
{

gize = g2

y.templatel_size = 20;

I .templatel_size = 30;

y-scenel_size » 38;

z_scenel_size = 60;

pad_size = 64;

if(targ_num!=0)

{
2printf (2p3,"ssesssnsessssssssesnesse Ch“"'):
2print?(2p3,“e in windovw size. Nev window ");
2print?(2p3,"size {a: Small (Teamplate=30x");
2print?(£p3,%20, Scanes60x38) sssssssnses’);
Iprint? (£p3,"ecssensessassnsss\n\n");

y

}

if(optes’n’)

size » 'm’;

Y-templatel_zize = 28;

I_templatel_size w 42;

y.sCenel_size = 72;

x_scCenel_size = 116;

pad_size = 128;

if(targ_num!=0)

{
2print? (£p3,"esecsanseonsesssnssess Chang"):
2print?(2p3,"e ip windov size. Nev window *);
2print?(2p3,"size is: Nediun (Template=421");
2print? (2p3,"28, Scene®116172) sesecnsnses’);
fprutf (¢P3 ,'esssssnsssassere\n\n");

139

if(optes’a’)
{
size = 'g’;
y-templatel_size = 20;
z.templatel_size = 30;
y.scenel _size » 38;
z.0cenel_size » 80;
pad.size = 84;
i2(targ sumi=0)
{
fpriate(£p3,” Chang”);
2print?(2p3,%e in windov sixze. Nev windov ");
2print?(2p3,"size is: Adapt/Small (Template=");

2print? (2p3,"Adapt, 8 =80x38) -);
Zprinte (£p3, "esvessssessssves\n\n®);
} :
}
it (opte=’s’)
{

size = 2’

y-templatel_size = 20;

z_templatel_size = 30;

y.scenel_size = 320;

z_scenel_size = 499;

pad_size » §12;

if(targ_oum!=0)

{
fprints (2p3,* sese Chang®);
2print2(2p3,"s in windov size. Nev window *);
fprint?(2p3,”size is: Adapt/Full (Template=");
2printf(2p3,"Adapt, Scene=4991330) ssssssesese™);
fprinte (2p3 ,"ssssesssssssssss\n\n");

}
)
/ ¢/
/* Reinitialize the KHOROS commands to =/
/* extract the template and scane. ./
/ ./

z.templatel = x_coord - (x_templatel_size / 2);
y.templatel = y_coord - (y_templatel_size / 2);
z.scenel = x_coord - (x_scenei_size / 2);
y.scenel = y_coord - (y_scenel_size / 2);

strcpy(extr_si, "vextract -1 /tmp/trac/scenel_pad_4x8 ");
strcat(extr_sl, "-o /tmp/trac/sub_scenel *);
sprintf(string, "-x 14 ", z_scenel);

strcat(extzr_si, string);

sprintf(string, "-y Id ", y_scenel);

strcat(extr_si, string);

sprintf(atring, "-v %d “, x_scenel_size);
strcat(extr_sl, string);

sprintf(string, "-h 14", y_scenel_size);

strcat(extr_si, string);

strepy(extr_tl, "vextract -1 /tmp/trac/templ_pad. 428 ");
strecat(extr_ti, "-o /tmp/trac/sub_templ “);
sprintf(string, "-x %d ", x.templatel);

streat(extr_t1, string);

sprintf(string, "-y 1d ", y_templatel);

strcat(extr_t1, string);

sprintf(string, "-v %d ", x_templatel_size);

140

streat(extr_ti, string);
sprintf(string, "-bh 1d", y.templatel_size);
strcat(extr_ti, string);

}

5 74
/* Annotate change in binarization technique. ®/
/e .
it(optes'z’)
{

bin_state = ’s’;

opt = (L1

12 (targ.oum!=0)

{

tprintf (2p3,” Change izn");
2print?(2p3,” binarization method. The nev method is:");
2print?(£p3,” Line-by-1ine Average. secssssessssessse”);
2printf (Lp3,"sesssessssse\n\n");

}

it (optee’d’)
{
bin_state = 'b’;
opt = 't';
if(targ_numi=0)
<
fprint?(2p3,"esses sune se» Change");
tprintf(£p3," in binarization method. The new method “);
tprint?(£p3,"is: Scene Averags. .. ");
£printf (£p3,"essserssssss\n\n");
2
}

i2(opten’c?)
{

bin_state = '¢’;

opt = 't’;

it(targ_num!=0)

{ 1printf(1p3,“sssesssessssessssssssssasvissss Change");
fprint?(2p3,” in biparization metbod. The nev method ");
tprint?(£p3,"is: Cline Binarization. sessssssssssssss’);
2printf(£p3,"essesssscenass\n\n");

}

}

/* »/
/* 1If last image in series has been displayed or per ¢/
/* user’s request, kill background jobs and exit. */
/e o= o/
it(opte=’e’ || (argc-count)==i)
{
strcpy(search, "ps -aux | grep putimage | grep =v");
strcat(search, " ‘grep’ > /tmp/trac/job_pumbers");
system(search);

12((2p1 = 2open("/tap/trac/job oumbers", "r"))==NULL)

{
printf ("Error opening /tmp/trac/job_numbers!\n");
exit(1);

}

for(iml; 1<4; iee)

{

fgets(string, 128, fp1);

141

}

tor(s=0; m<6; n++) ps_value(n) = stringm ¢+ 9);
pe.valueln] = *\0’;
1f(de=1) Jobi & atoi(ps_value);
12(i==2) jJob2 = atoi(ps_value);
if(1se3) Job3 » stoi(ps.value);
by .
fclose(2pl);
sprintf(k_displ_tov, "kill Xd4", jobl);
sprinte (k. displ_si, “kill Xd*, §ob2);
sprinte(k_displ_ti, “kill 1d", jobd);
systea(k_displ_fov);
systea(k_displ_si);
system(k_displ_t1);
12((2p2 = topen("/tmp/trac/E0S_flag”, "v"))==NULL)
{

printf("Error opening /tmp/trac/EDS_flagi\n");
exit(1);
)

tputclon, 2p2);
Zclose(2p2);

i2(targ_num!=0)
{
fclose(2p3);
2close(2p6);
2close(2p7);

}

print2("Lc\n", *\007*);
printz("/e DN
print2(Me=cecce=s/\n");

print?("/* This program bas been terminated either");
print?(* in re- s/\p");

printf("/¢ ponse to the user’s request or becauss ");
print?("the di- ¢/\n");

print2(*/e gitized images for this sequencs have b");
print?(“een ex- ¢/\n");

printf("/+ hausted. If the program ’trac.menu’ has");
printf (" not o/\n");

printf(”/+ already been terminated, please reponse™);
priptf (" witk s/\n");

print?("/e option ’e’ toc tarminate it now. "y
printe(" s/\n");

printe("/s ")
printf("emcecnaa e/\n");

oxit(0);

/e o/
/* Reset varisbles and kill background processes »/
/* to enable the user to select a newv target. o/

/

./

if(optew’n’)
{

ecycle = 0;

state ® ’p’;
pass * 1;

times = 0;

index » 0;

Tun = O;

opt = ‘a’;
facter » 0.15;
bin_state » b’

142

12 (targ_numt=0)
{
fclose(2p3);
2close(2pt);
tclose(2pT);

}

strepy(search, “ps -aux | grep /tmp/trac/Ti.di | grep ");
strcat(search, "putimage > /tmp/trac/job_numbers”);
system(search);

12((2p4 = fopen("/tmp/trac/job_pumbers”, “r"))=aNULL)

{

printf("Exror opaning /tmp/trac/job_pusbersi\n");
oxit(1); :

)}

tgets(string, 128, fp4);

for(we0; m<6; m++) ps_value(n) = stringim ¢ 9];

ps.value{m] = ’\0’;

jobi = atoi(ps_value);

fclose(2pd);

strcpy(search, “ps ~aux | grep /tmp/trac/S1.dis | grep *);
strcat(search, "putimage > /tap/trac/job_numbers”);
systea(search);
12((2p5 = fopen(™/tmp/trac/job_numbers*, "r*))e=FULL)
{
print? ("Exror opening /tmp/trac/job_numbers!\n");
exit(l);
}
tgets(string, 128, 2p5);
tor(m=0; m<¢; m++) ps_value(n] = stringla + 9];
ps.value[n] = '\0*;
job2 = atoi(ps_value);
f2close(2pB);

sprint?(k_displ.t1, "kill %d", jobl);
sprinte(k_displ.sl, "kill Xd", job2);

systan(x_displ_t1);
. system(k_displ_si);
)
}
}

}
/e /
/e Function: 1lipe_bin This function performs s/
/* line-by-line binarization of an image. ./
/» e/

void line_bia(infile, outfile, factor, upper, lover)
char infile{128), outzile[128];
iat upper, lower;
float factor;
{
FILE *fp1, *2p2;
int total » 0, 1, m, max = O;
int num_array[8], valus, r, X, number;
char temp, torm2{25], string(128], to_asc11[128];
char to_vif2[128], to_byte[128);
float average;

Jo=== ———— e/
/* Initialize KHORDS sub-routine command strings. */
L e D b o/

sprintf(string, "vprdata -i Ys ", infile);

143

strcpy(to_ascii, string);
strcat(to.ascii, "~ /emp/trac/line_bin_indats -m 0%);

strepy(to vif2, "wsclvif? -i /tap/trac/line_bin_outdats -0 ");
strcat(vo_vite, “/tmp/trac/line _bin_2vift ~£4 0 ~t 0 ");
strcat(to vife, "=z 320 ~c 499 > 3 =B) ~b § =4 0 «h 0 -8 O%);

systea(to_ascil);

12((fp1 » fopan("/tmp/trac/line_bin_indats”, *r"))eeNULL)
{

print? (“Errver opening /tmp/trac/line_bin_indata!\n");
exit(1);
>

i2((2p2 = fopen("/tap/trac/line_bin_ cutdata®, “v"))=seyuULL)
{
print? (“Exror writing to /tmp/trac/line_bin_outdata!\n");
oxit(1);
}

for(k=0; k<13; ke¢) ‘fgets(string, 128, fp1);
for(k=0; xX<320; kee)

{
/e ./
/* Averags the first 8 pizels of a line. »/
/* ./
for(r=0; r<8; re¢)
{

1e0;
if((2getn(string, 128, fp1))==NULL)
{

printf ("Error reading from /tmp/trac/in_test_data!\n");
exit(1);
}
temp = string1);
while(tempism’e?)
{
lel e+
temp = atring[l];

1] +3;

nw0; .
temp = string(l);
while(temp!=’\n’)
{
tern2{m] = temp;
L B IR
l=]93;
temp = stringll);
}
tern2(a] = ’\0';
value = atoi(term2);

pun_array(r) = value;
total = total ¢ value;

i1 (upperesy)
{

tprint?(2p2, "Yd\n", upper);
alse

{
tprint? (2p2, "Xd\n". value);

144

}

42((value - max)>0) max = value;

} LR SN

o/
o/
o/
-/ e

]e
/* Binarize each pizel bass on tbe

/e average of the previous 8 pixals.
/e
for(re0; rcdfl; ree)

12((tgeta(string, 128, 7p1))==NULL)
{

print? ("Exror reading from /tap/trac/in_test_datai\n");
oxit(l); c el e

}
1e0;
temp = string(l]);
vhile(tempie’=’)
{
1=1e3;
temp = string(1]);

1= ¢3;

[L H

temp = arring(l);

vhile(temp!®’\n’)

{
torm2[m] * temp;
Bem <+
l1=)+13; .
temp *» stringll);

term2{m]) = *\0’;
value » atoi(term2);

average = ((float) total) / 8.0;
average = (averagse * factor) + average;
12(((210at) value = average)>0)

{

number ® upper;

b
else
{
pumber = lower;
}
tprint2(fp2, "%d\n", number);
total = 0;
for(m=0; mdT; mee)
{

oun_array[n] = pua_array(s + 1};
total = total ¢ num_array[a];
}
total = total + value;
}
}
fclose(2pl);
fclose(2p2);

system(to_vif?);

{7((upper -~ max)>0) max ® upper;
if (upper==1)

- ‘e

145

]

s T

{
max ® §;

}

strepy(to_byts,
sprintt(string,
strcat(to_byts,
streat(to byte,

system(to_byte);
return;

“yconvert ~i /tmp/trac/line_bia 2vift -0 *);

"%s -n 14", outfile, max);

string);
" ~¢ byte =b O");

146

[.

~

g

B.8 COR.C

/e /
/e COR.C ./
/e s/
/e AIR FORCE INSTITUTE OF TECEROLOGY o/
/¢ TRACKS TARGET USING THE TECHNIQUE OF ADAPTIVE CORRELATION =/
/e by Capt Dennis A. Nontera o/
/s October 15, 1992 s/
/e ./

/* This program executes the corrslaticn plane postprocessing */
/% algoritha created during my thesis oa individual pictures. ¢/
/* This prograa does not conduct the actual correlsticm or »/
/* template autocorrelation. This progran only conducts the o/
/e correlation peak beight/shape matching. o/
lesse /

sinclude <stdio.h>
#include <string.h>
8include <math.h>

main()
{

/e o/

/* Define program variables and ./

/* check for imput directory path. »/

/e */

FILE otp1;

char path(128), term1[26), tapath[128), string[128]), skip;
int § = 0, j, xx, Yy, tmpz, tmpy, cownt, xcen, ycen, CIX, CYy:
int fact, txx, tyy:

float cortemp[7)[7), normt, cordata(128){128], bolder2;
float normc, morml, norm2, pormd;

double percent, bolder;

/ o/
/% Determine which sequence to display »/
/ ./

print? ("Enter path to be used \n%);
for(i=0; (skipsgetchar()) t= *\n’; *ei){
tapath[i] = skip;

tapath(i) = "\0’;
strcpy(path, tmpath);
sprint?(termi, "_tem.dat");
strcat(path, termi);
12((fp1 = topen(path, "r"))=sNULL)
{
printf ("Error opening Is!\n", path);
oxit(1);
)
fgets(string, 128, fp1);
aorat = 0;

for (yy = 0; yy <= 6; ++yy) {
for (xx » 0; xx <= §; eoxx) {

12((2scant (2p1, “%2*, Acortemp{xx](yy)))e==NULL)

P e a
printf ("Error reading frxom Is!\n", path); -~ *--
exit(1); ;

)

sorst » pormt ¢ (cortemplxx)(yy) ¢ cortemp[xx)(yy));

)

tecant (2p1, "Yes™);
)
fclose(fpl);

strepy(path, tupath);
sprintf(termi, "_sc.dat®);
strcat(path, terml);

12((2p1 = fopen(path, "r"))=s=NULL)
{

print? ("Exror opening Ist\z", path);
oxit(y);
}

tgeta(string, 128, fp1);

for (yy = O; yy <= 127; *oyy) {
for (xx = 0; xx <= 127; *exx) {

12((fscant(fpl, X", Rcordata[xx][yyl))==WULL)
{
print? ("Error resding from %s!\n", path);
exit(1);
}
}
fscant(2pl, "Yes");
}
2close(2pl);

tapx ® O;
tapy = O}
percent = 100.00;
tor (xx = 0; xx <= 120; eexx) {
for (yy » O; yy <= 120; ++yy) {
holder = 0.00;
bholder2 *» 0.00;
cownt = 0;
pormc » 0.00;
xcen ® xx ¢ 3;
ycen = yy ¢ 3;

if(cordatalxzcen) [ycen) > (cortemp(3]{3] » 0.25))
{

tor (exx » 0; cxx <= 6; *++cxx) {
for (cyy = 0; cyy <= 6; +ecyy) {

txx = cxx ¢ xx;
tyy = cyy ¢ yYi
normc = normc ¢ (cordataltxx] [tyy) » cordataltxx][tyy));
norm] = cordata{txz][tyy):
norm2 = cortesplcxx]{cyy);
norm3 = corteamp{3](3);
fact = 1;
if2(cxxe=3) fact » fact ¢ 8;
12((cxzx=*2) || (cxxe=4)) fact = fact » 4;
12((cxxwel) [} (cxxe=5)) fact = fact * 2;

148

42(cyy==3) fact ® fact ¢ §;

12((cyy==2) |] (cyy==d)) tact = fact ¢ 4;
i12{(cyy>=1) || (cyy==5)) fact » fact ® 2;
12((cxxv=3) 8% (cyy==3)) fact » fact ¢ 7;

holder2 = holder2 ¢ (((flcat)fact) & ((normi - morm2) * (norml = morm2)));
)

}
bolder = ((sqrt((doudble)bolder2)) / ((double)normd));

12((cownt==0) 2k (holder ¢ percent))
{

tmpx & xx ¢+ 3;

tapy = yy ¢+ 3;

psrcent ® holder;

}

}
)
printf("Xs is located at Xd,%d \n", tapath, tmpx, tmpy);

149

10.

11.

12.

13.

Bibliography

Bar-Shalom, Y. and Tse, E. "Tracking in a cluttered environment with proba-
bilistic data association,” Automatica 11:451-460 (1975).

Birmimal, K. and Bar-Shalom, Y. "On tracking a maneuvering target in clut-
ter,” JEEE Transactions on Aerospace and Electronic Systems AES-20:635-645
(Sep 1990).

Chen, H.-F. and Guo, L. "Continuous-time stochastic adaptive tracking - ro-
bustness and asymptotic properties,” SIAM Journal on Control and Optimiza-
tion 28:513-527 (May 1990).

. Fleisher, Michael., et al. "Target Location Measurement by Optical Correlators:

a Performance Criterion,” Applied Optics, 31:230-234 (Jan 1992).

. Gara, Aaron D. "Real-time Tracking of Moving Objects by Optical Correlation,”

Applied Optics, 18:172-174 (Jan 1979).
Gregory, Don A., et al. ”Optical Correlator Tracking Nonlinearity,” Applied
Optics, 26:192-194 (Jan 1987).

Hutchins, R. G. and Sworder, D. D. "Image fusion algorithms for tracking
maneuvering targets,” Journal of Guidance Control and Dynamics 15:175-184
(Jan/Feb 1992).

Kumar, B.V.K. Vijaya " Tutorial Survey of Composite Filter Designs for Optical
Correlators,” Applied Optics, 31:4773-4801 (10 Aug 1992).

. Khoros Release: 1.0. The Khoros Group, Department of Electrical and Com-

puter Engineering, University of New Mexico, Albuquerque, New Mexico.

Law, Paul D. Correlation Based Distortion Invariant Infrared Tracking. MS
thesis, AFIT/GE/ENG/91D-35. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1991 (DTIC number
not available at this time).

Nagarajan, V., et al. " An algorithm for tracking a maneuvering target in clut-
ter,” IEEE Transactions on Aerospace and Electronic Systems AES-20:560-573
(Sep 1990).

Schils, G. F. and Sweeney, D. W. "Optical processor for recognition of three-
dimensional targets viewed from any direction,” Journal of the Optical Society
of America A5:1309-1321 (1988).

Tam, Eddy C., et al. " Autopomous Real-time Object Tracking with an Adaptive
Joint Transform Correlator,” Optical Engineering, 29:314-320 (Apr 1990).

150

14.

15.

16.

17.

18.

Troxel, Steven E. Position, Scale, and Rotation Invariant Target Recognition
Using Range Imagery. MS thesis, AFIT/GEO/ENG/87D-3. School of Engi-
neering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1987 (AD-A188828).

Walsh, T. and Giles, M. "Statistical filtering of time-sequenced peak correlation
responses for distortion-invariant recognition of multiple input objects,” Optical
Engineering 29:1052-1064 (1990).

Ublmann, J. K. " Algorithms for multiple target tracking,” American Scientist
80:128-141 (Mar/Apr 1992).

Von, Greg, Senior Engineer. Telephone interview. Southern Research Technolo-
gies, Inc., Birmingham AL, 16 April 1992.

Yee, M. and Casasent, D. "Multitarget data association using an optical neural
network,” Applied Optics 31:613-624 (Feb 10 1992).

101

e et g mian

Vita
Captain Dennis A. Montera was born on 5 M-a:v 1966 in bowney, California.
He grew up throughout the Los Angeles, California area, and graduated from John

F. Kennedy High School in 1984. He subsequently attended the United States Air
Force Academy where he graduated on 1 June, 1988 with a Bachelor of Science in

. "o Electrical Engineering. He was commissioned into the United States Air Force on

~... that same day. He married the former Miss Ilona A. Meinberg before reporting to

his first assignment at Los Angeles AFB, California. There he served as a Project
Engineer for the Deputy Chief of Staff, Developmental Planning until entering the
Air Force Institute of Technology in May 1991.

Permanent address: 5141 La Luna Drive
La Palma, California 90623

152

Form Approved .

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

PUDIK MEDOMING DUTOeN 107 this COHECION O INTOIMALION 1 FIUMPITEY 10 verage | ROU! D! TELDONIE. INKIUOING the LIME 107 EVIEWING INSLTUCLIONS, WBICRING EXISUING RIS SOUTLE.
QITNENING SNA MaINLaAINg The GATS NEEOSD. AN0 COMDIL1ING SN0 1eviewINg The COIRCTION JT INTOrMaLION Sena comments ¢
COliection 01 INTOFMANION, INCILEING SUGGEIION 107 rEGUCING ThI3 DUrGen. 10 WISHINGTON resoauanten Services. Direcrorate or ntormation Operations and Repofty 1215 jetterson
Doavs Fighway Suite 1204, Arhingion, VA 22202-4302. and 10 the Ottice 0 Management and Buager. Paperwork Recuction Projet (0704-0188). washingron, DC 20503

o?uomg This DUTOen EsLIMPTE OF 3Ry OTHher aspect Of thn

Y USE ONLY (Leave blank) | 2. REPORT DATE 3. REPQRT TYPE_AND DATES COVERED
1. AGENCY USE O (Leave blank) ecember 1992 ﬁuter‘l hesis
4, TITLE AND SUBTITLE) . 5. FUNDING NUMBERS
Object Tracking Through Adaptive Correlation
6. AUTHOR(S)
Dennis A. Montera
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. :Egz?‘?hxshsﬂ&:mmznlon
Air Force Institute of Technology, WPAFB OH 45433-6583
54 . AFIT/GEO/ENG/92D-07
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Mr. Jim Leonard AGENCY REPORT NUMBER
WL/AARA, WPAFB, OH 45433
11, SUPPLEMENTARY NOTES
122. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

FENV

13. ABSTRACT (Maximum 200 words)

This paper discusses the use of a correlation based system to track an object through a series of images based
on templates derived from previous image frames. The ability to track is extended to sequences which include
multiple objects of interest within the field of view. This is accomplished by comparing the height and shape
of the template autocorrelation to the peaks in the correlation of the template with the next scene. The result
is to identify the region in the next scene which best matches the designated target. In addition to correlation
plane postprocessing, an adaptive window is used to determine the template size in order to reduce the effects
of correlator walk-off. The image sequences used were taken from a Forward Looking Infrared (FLIR) sensor
mounted onboard a DC-3 aircraft. The images contain a T-55 tank and both an M-113 and a TAB-71 armored
personnel carrier moving in a columnized formation along a dirt road. The goals of this research were to 1) track
targets in the presence of other, and sometimes brighter, targets of similar shape; 2) to maintain small tracking
errors; and 3) to reduce the effects of correlator walk-off.

14. SUBJECT TERMS 15. Nlilgi&iﬁ Of PAGES

correlation, adaptive template, tracking

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION |19, SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

RZLREsIFIED YNEL L8ErIED N ASSIFIED UL

NSN 7540-01-280-5500 Stangard form 298 (Re_v 2-89)

Brmers mam m o

s

